بررسی تاثیر فشار سینه کار بر نشست سطح زمین در مدل‌های رفتاری مختلف خاک با استفاده از روش تفاضل محدود سه بعدی (مطالعه موردی: خطA مترو قم)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری؛ دانشکده‌ی مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود

2 دانشیار؛ دانشکده‌ی مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود

چکیده

در تونل های شهری که بیش تر در عمق کم و در بستر خاکی حفر می شوند، فشار جبهه کار می تواند یکی از عوامل پیشگیری کننده ی نشست سطح زمین باشد. از بین روش های مختلف تعیین فشار جبهه کار، روش عددی بهترین روش می باشد. انتخاب مدل رفتاری مناسب یکی از اساسی‌ترین مراحل در تحلیل‌ عددی است. در اکثر مدلسازی های عددی حفر تونل از مدل رفتاری موهر کولمب استفاده میشود این مدل رفتاری غالبا منجر به پیش بینی نشست کمتر سطح زمین نسبت به نتایج ابزاربندی می شود. در این تحقیق تاثیر شش حالت فشار جبهه کار در مدل های رفتاری الاستوپلاستیک شامل مدل رفتاری موهر کولمب، مدل رفتاری سخت شونده و مدل رفتاری دراگر پراگر بررسی شد. در راستای این تحقیق، مترو خط A قم به کمک روش تفاضل محدود مدل‌سازی شد. درنهایت، نتایج حاصل از تحلیل عددی با استفاده از نتایج رفتار سنجی و مقایسه با مقادیر اندازه‌گیری شده نشست سطح زمین اعتبار سنجی شد. نتایج حاصل از این تحقیق نشان داد که در مدل رفتاری موهر کولمب و دارگر پراگر با افزایش فشار جبهه کار مقدار نشست سطح زمین کاهش پیدا کرد. در مدل رفتاری سخت شونده، نتایج اندکی پیچیده‌تر بود و با افزایش فشار جبهه کار تا 2 برابر مقدار فشار اولیه میزان نشست سطح زمین کاهش و با افزایش بیشتر فشار جبهه کار این مقدار نشست افزایش یافت. نتایج مدل‌سازی با مقادیر ابزاربندی مقایسه و نشان از اختلاف کمتر مدل رفتاری سخت شونده با نتایج ابزاربندی نسبت به دو مدل رفتاری موهر کولمب و دراگر پراگر داشت.

کلیدواژه‌ها


Abu-Farsakh, M. Y., & Tumay, M. T. (1999). Finite element analysis of ground response due to tunnel excavation in soils. In Geo-engineering for underground facilities (pp. 514-525). ASCE.
Ahmed, M., & Iskander, M. (2012). Evaluation of tunnel face stability by transparent soil models. Tunnelling and Underground Space Technology, 27(1), 101-110.
Broere, W. (2001). Tunnel face stability and new CPT application [Ph. D. thesis]. Delft University of Technology, Delft University Press, Delft, The Netherlands.
Broms, B. B., & Bennermark, H. (1967). Stability of clay at vertical opening. Journal of the Soil Mechanics and Foundations Division, 93(1), 71-94.
ÇELİK, S. (2017). Comparison of mohr-coulomb and hardening soil models’ numerical estimation of ground surface settlement caused by tunneling. Iğdır University Journal of the Institute of Science and Technology, 7(4), 95-102.
Chambon, P., & Corte, J. F. (1994). Shallow tunnels in cohesionless soil: stability of tunnel face. Journal of geotechnical engineering, 120(7), 1148-1165.
Chapman, D., Metje, N., & Stärk, A. (2017). Introduction to tunnel construction. Crc Press.
Do, N. A., Dias, D., Oreste, P., & Djeran-Maigre, I. (2014). Three-dimensional numerical simulation for mechanized tunnelling in soft ground: the influence of the joint pattern. Acta Geotechnica, 9(4), 673-694.
Eisenstein, Z., & Ezzeldine, O. (1995). The role of face pressure for shields with positive ground control. In International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts (Vol. 3, No. 32, p. 136A).
Eslami, B., Golshani, A., & Arefizadeh, S. (2020). Evaluation of Constitutive Models in Prediction of Surface Settlements in Cohesive Soils–A Case Study: Mashhad Metro Line 2. ISSMGE International Journal of Geoengineering Case Histories, 5(3), 182-198.
Finno, R. J., & Clough, G. W. (1985). Evaluation of soil response to EPB shield tunneling. Journal of Geotechnical Engineering, 111(2), 155-173.
German Standard DIN 4085 (Germany, 1987, 2007, Blatt 1und 2), Calculation of earth-pressure, Normenausschuss Bauweisen, DIN Deutsches Institut für Normung e.V. Beuth Verlag GmbH, Berlin.
Guglielmetti, V., Grasso, P., Mahtab, A., & Xu, S. (2008). Mechanized tunnelling in urban areas: design methodology and construction control. CRC Press.
Gulvanessian, H., Calgaro, J. A., & Holický, M. (2002). Designer's guide to EN 1990: eurocode: basis of structural design. Thomas Telford.
Hejazi, Y., Dias, D., & Kastner, R. (2008). Impact of constitutive models on the numerical analysis of underground constructions. Acta Geotechnica, 3(4), 251-258.
Heidari Sheibani, R., Zare, S., Mirzaei, H., & Foroughi, M. (2012). Numerical Study of Face Pressure Effect on Surface Settlement in Soft Ground Mechanized Tunneling-A Case Study: Tehran Metro Line 7. Tunneling & Underground Space Engineering, 1(1), 57-67.
Itasca Consulting Group. (2012). FLAC fast Lagrangian analysis of continua, version 5.0. User’s manual.
Kanayasu, S., Kubota, I., & Shikubu, N. (1995). Stability of face during shield tunnelling-A survey on Japanese shield tunneling. In Underground construction in soft ground (pp. 337-343).
Kasper, T., & Meschke, G. (2006). On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling. Tunnelling and Underground Space Technology, 21(2), 160-171.
Kim, S. H., & Tonon, F. (2010). Face stability and required support pressure for TBM driven tunnels with ideal face membrane–Drained case. Tunnelling and Underground Space Technology, 25(5), 526-542.
Kimura, T. (1981). Centrifugal testing of model tunnels in soft clay. In Proc. 10th Int. Conf. Soil Mech. and Found. Engg (Vol. 1, pp. 319-322).
Kirsch, A. (2010). Experimental investigation of the face stability of shallow tunnels in sand. Acta Geotechnica, 5(1), 43-62.
Konietzky, H., & Ismael, M. (2017). Failure Criteria for Rocks–an Introduction. Introduction into geomechanics.
Lambrughi, A., Rodríguez, L. M., & Castellanza, R. (2012). Development and validation of a 3D numerical model for TBM–EPB mechanised excavations. Computers and Geotechnics, 40, 97-113.
Leca, E., & Dormieux, L. (1990). Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material. Géotechnique, 40(4), 581-606.
Litsas, D., Sitarenios, P., & Kavvadas, M. (2018, April). Advanced numerical analyses of EPB tunnelling using critical state plasticity. In ITA-AITES World Tunnel Congress Proceedings, Dubai (pp. 21-26).
Mansour, M. A. M. (1996). Three-dimensional numerical modelling of hydroshield tunnelling. na.
Mollon, G., Dias, D., & Soubra, A. H. (2009). Probabilistic analysis of circular tunnels in homogeneous soil using response surface methodology. Journal of Geotechnical and Geoenvironmental Engineering, 135(9), 1314-1325.
Mollon, G., Dias, D., & Soubra, A. H. (2010). Face stability analysis of circular tunnels driven by a pressurized shield. Journal of geotechnical and geoenvironmental engineering, 136(1), 215-229.
Mori, A., Kurihara, K., & Mori, H. (1995). A study on face stability during slurry-type shield tunnelling. In Underground construction in soft ground (pp. 261-264).
Nematollahi, M., & Dias, D. (2019). Three-dimensional numerical simulation of pile-twin tunnels interaction–Case of the Shiraz subway line. Tunnelling and Underground Space Technology, 86, 75-88.
Nematollahi, M., & Molladavoodi, H. (2018). Three-dimensional simulation of the influence of the oblique segmental joints and of the lagging distance between twin tunnels’ faces on the tunnel behavior-case study of the second line of Shiraz subway. Tunneling & Underground Space Engineering, 6(2), 81-95.
Obrzud, R. (2010). The hardening soil model: A practical guidebook. Zace Services.
Ohta, T., Kiya, H., Esaki, T., & Jiang, Y. (2000, November). Experimental Study And Numerical Analysis On The Stability Of Tunnel Face In Sandy Ground. In ISRM International Symposium. OnePetro.
Pan, P. Z., Feng, X. T., & Hudson, J. A. (2012). The influence of the intermediate principal stress on rock failure behaviour: a numerical study. Engineering Geology, 124, 109-118.
Sahel Consulting Engineers. (2011). Geological and geotechnical studies of Qom city metro, Line A.
Sayadi, S. (2015). Assessment of tunnel induced displacement in sequential excavation method to develop soil constitutive model, MSc dissertation, Amirkabir University of Technology, Tehran, Iran, (In Persion).
Sebastianelli, M., Felice, G., Malena, M., Amorosi, A., Boldini, D., & Di Mucci, G. (2013). A class C prediction of the settlements induced in a historical masonry structure by excavation of shallow twin tunnels. In 2 nd International Symposium on Geotechnical Engineering for the Preservation of Monuments and Historical Sites, Naples, Italy (pp. 649-655).
Sun, S., Pei, H., & Zhang, S. (2006). Analysis of face stability and ground settlement in EPB shield tunnelling for the Nanjing metro. The Geological Society of London, IAEG, Paper, (274).
ünther Meschke, G., Nagel, F., Stascheit, J., & Kasper, T. ADVANCED NUMERICAL SIMULATION OF SHIELD TUNNELLING AND ITS ROLE IN THE DESIGN PROCESS.
Vakili, K., Lavasan, A. A., Schanz, T., & Datcheva, M. (2014, June). The influence of the soil constitutive model on the numerical assessment of mechanized tunneling. In Numerical Methods in Geotechnical Engineering contains the proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE 2014), Delft, The Netherlands (pp. 18-20).
Vermeer, P. A., Ruse, N., & Marcher, T. (2002). Tunnel heading stability in drained ground. Felsbau, 20(6), 8-18.
Yang, X., Yuan, H., Wu, J., & Li, S. (2018). Elastoplastic analysis of circular tunnel based on Drucker–Prager criterion. Advances in Civil Engineering, 2018.
Zakhem, A. M., & El Naggar, H. (2019). Effect of the constitutive material model employed on predictions of the behaviour of earth pressure balance (EPB) shield-driven tunnels. Transportation Geotechnics, 21, 100264.