تحلیل عددی نیمرخ طولی و عرضی گودی نشست زمین در اثر تونلسازی با EPB- مطالعه‌ی موردی: تونل‌های متروی شیراز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد؛ گروه مهندسی معدن؛ دانشکده‌ی فنی و مهندسی؛ دانشگاه شهید باهنر کرمان

2 دانش‌آموخته‌ی کارشناسی‌ارشد مهندسی معدن؛ گرایش مکانیک سنگ؛ دانشکده‌ی فنی و مهندسی؛ دانشگاه شهید باهنر کرمان

3 دکترای تخصصی ژئوتکنیک؛ شرکت Golder Associates سنگاپور

4 کارشناس؛ واحد کنترل EPB؛ شرکت بامراه‌ی شیراز

چکیده

حفاری در مناطق شهری امری پیچیده و مخاطره‌آمیز است. یکی از مسایل مهم در حین عملیات ساخت تونل‌های مترو بررسی تاثیر مراحل حفاری بر نشست سطح زمین و مهار آن است. برای این منظور بیش‌تر از ماشین‌های فشار تعادلی زمین (EPB) یا انواع دیگر سپرها استفاده می‌شود؛ در نتیجه می‌توان تا حد قابل توجهی جابجایی‌های ناشی از حفاری تونل را کاهش داد. در این مقاله خصوصیات گودی‌ نشست تونل مترو در مسیر بلوار کریم‌خان زند شیراز که با استفاده از دو TBM Shield از نوع EPB حفاری شده، مورد بررسی قرار گرفته است. با استفاده از نرم‌افزار Plaxis 3D Tunnel بیش‌ترین نشست سطحی و پهنای گودی نشست در اطراف EPB تعیین و تغییرات آن در مراحل پیشروی تونل تحلیل شده ‌است. همچنین جابجایی تاج تونل در امتداد محور طولی تعیین و مقایسه‌ای بین نشست سطحی و عمقی زمین انجام شده است. در نهایت نیز پارامترهای گزاره‌ی تجربی پک در مسیر تونل مترو تعیین و یک گزاره‌ی تجربی برای پیش‌بینی نشست ارایه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Analysis of Longitudinal and Transverse Surface Settlement Induced by EPB Tunneling- A Case Study: Shiraz Subway Tunnels

نویسندگان [English]

  • Reza Rahmannejad 1
  • Mahdi Esfandiary 2
  • Eshagh Namazi 3
  • Hamed Jamshidi 4
1 Professor; Faculty of Engineering; Department of Mining; Shahid Bahonar University of Kerman
2 M.Sc. in Rock mechanics; Faculty of Engineering; Department of Mining; Shahid Bahonar University of Kerman
3 PhD in Geotechnical Engineering; Expert; Golder Associates (Singapore)
4 Expert; EPB Control Center; Bamrah Construction Company (Shiraz)
چکیده [English]

A major concern about construction of tunnels is accurate prediction of ground displacement, which distorts and, in severe cases, damages surface structures. Empirical Peck’s method is commonly used in many tunneling projects to predict surface settlements. Reasonable prediction by this method requires an appropriate estimation of settlement trough width (i). This parameter can be obtained from previous case histories with similar ground conditions and excavations.
 
Introduction
A part of Shiraz subway system is constructed by twin tunnels using EPB machine. Due to the lack of relevant case histories, numerical simulations are used to predict i for the Shiraz tunnels. The longitudinal and transverse surface settlements obtained by numerical analyses are compared with those obtained from the empirical settlement method. Consequently, the maximum settlement and i are predicted for a part of Shiraz subway tunnels. The development of settlement profiles obtained by numerical modeling is also investigated in order to achieve the steady state condition behind the tunnel face.
 
Methodology and Approaches
The numerical simulations are performed using PLAXIS 3D Tunnel. The tunnel construction process has been varied out by systematic approach, in 35 phases. The empirical settlement method suggested by Peck has been used to predict the transverse settlement trough. The longitudinal and transverse settlements predicted by numerical modeling are also obtained during tunnel excavation. The development of settlements is studied to establish the steady state condition. The initial estimation of i is obtained by the current empirical equations. To achieve the appropriate trough width, the initial i is modified by comparison of settlement troughs obtained from empirical and numerical approaches.
 
Results and Conclusions
The numerical results have shown that the surface settlement directly above the tunnel face is around 45% of the maximum surface settlement. Small surface settlement has been induced after installation of the tunnel lining. The development of surface settlement profiles has indicated that the steady state condition is reached at three times of tunnel diameter beyond the tunnel face. Comparison of the transverse surface settlement troughs indicated that trough width parameter is 1.8 times of the tunnel diameter. The current value can be used for prediction of surface settlement trough induced by tunneling in the similar ground and excavation conditions as Shiraz subway tunnels.

کلیدواژه‌ها [English]

  • Surface settlement
  • Mechanized tunneling
  • Finite element
  • Peck's method
  • Empirical settlement assessment
[1]     O’Carroll, J. B. (2005). A Guide to Planning, Constructing and Supervising Earth Pressure Balance TBM Tunneling. New York: Parsons Brinckerhoff Inc.

[2]     Toan, N. D. (2006). TBM and Lining Essential Interfaces. Msc Thesis, Italy: Politecnico Di Torino. http://ita-aites-srv1.epfl.ch/index.php?id=90&L=1.

[3]     Loganathan, N., & Poulos, H. G. (1998). Analytical Prediction for Tunneling-Induced Ground Movements in Clays. Journal of Geotechnical and Geoenvironmental Engineering, 124(9), 846-856. http://dx.doi.org/10.1061/(ASCE)1090-0241(1998)124:9(846).

[4]     Park, K. H. (2005). Analytical Solution for Tunnelling-Induced Ground Movement in Clays. Tunnelling and Underground Space Technology, 20(3), 249-261. http://dx.doi.org/10.1016/j.tust.2004.08.009.

[5]     Leca, E. & Barry, N. (2007). Settlements Induced by Tunneling in Soft Ground. Tunnelling and Underground Space Technology, 22(2), 119-149. http://dx.doi.org/10.1016/j.tust.2006.11.001.

[6]     Brinkgreve, R. B. J., & Broere, W. (2003). The Influence of Tunnel Boring on Foundations and Buildings in Urban Areas - A Numerical Study. Workshop on Geotechnics of Soft Soils (pp. 257-263). Delft University of Technology & Plaxis B.V. http://www.geo.citg.tudelft.nl/broere/pdf/brinkgreve_FEMtunnel_scmep2003.pdf.

[7]     Cheng, C. Y., Dasari, G. R., Leung, C. F., Chow, Y. K., & Rosser, H. B. (2004). 3D Numerical Study of Tunnel-Soil-Pile Interaction. Tunnelling and Underground Space Technology, 19(4-5), 381-382, http://dx.doi.org/10.1016/j.tust.2004.02.011.

[8]     Xiang, Y., Jiang, Z., & He, H. (2008). Assessment and Control of Metro-Construction Induced Settlement of A Pile-Supported Urban Overpass. Tunnelling and Underground Space Technology, 23(3), 300-307, http://dx.doi.org/10.1016/j.tust.2007.06.008.

[9]     اسفندیاری، م. (1387). تحلیل نشست ناشی از حفر تونل مترو و تاثیر آن بر روی سازه‌های سطحی- مطالعه‌ی موردی: زیرگذر خیابان زند شیراز. پایان‌نامه‌ی کارشناسی‌ارشد، دانشکده‌ی فنی- مهندسی، دانشگاه شهید باهنر کرمان.

[10]  Al-Khoury, R., Bakker, K. J., Bonnier, P. G., Vermeer, P. A., & Waterman. D. (2004). Tutorial Manual of Plaxis 3D Tunnel, Version 2. Netherlands: Delft University of Technology & Plaxis B.V.

[11]  مهندسان مشاور مکانیک خاک. (1386). گزارش آزمایشگاه مکانیک خاک و ژئوتکنیک مسیر قطار شهری شیراز.

[12]  Moller, S. C. (2006). Tunnel Induced Settlement and Structural Forces in Lining. Berlin: Doctoral Thesis, Institute of  Geotechnic, Sturrgart University. ISBN-10: 3-9211837-54-5. http://www.uni-stuttgart.de/igs/content/publications/IGS_Dissertationen/Doctoral_Thesis_Sven_Moeller.pdf.

[13]  Mroueh, H., & Shahrour, I. (2008). A Simplified 3D Model for Tunnel Construction Using Tunnel Boring Machines. Tunnelling and Underground Space Technology, 23(1), 38-45. http://dx.doi.org/10.1016/j.tust.2006.11.008.

[14]  Namazi, E., Mohamad, H., Hong, A. K. B., Hajihassani, M., Josoh, S. N., & Alavi, S. V. (2012). Ground Behaviour around a Tunnel Using Various Soil Models. Electronic Journal of Geotechnical Engineering, 17(E), 609-622. http://www.ejge.com/2012/Ppr12.056alr.pdf.

[15]  Franzius, J. N., Potts, D. M., & Burland, J. B. (2005). The influence of Soil Anisotropy and K0 on Ground Surface Movements Resulting from Tunnel Excavation. Géotechnique, 55(3), 189-199. http://dx.doi.org/10.1680/geot.2005.55.3.189.

[16]  Ng, C. W. W., & Lee. G. T. K. (2005). Three-Dimensional Ground Settlements and Stress Transfer Mechanisms due to Open-Face Tunnelling. Canadian Geotechnical Journal, 42(4), 1015-1029. http://dx.doi.org/10.1139/t05-025.

[17]  Sweeney, P. (2006). A Study of Interaction Effects due to Bored Tunnels in Clay. Master’s Thesis, Department of Civil and Environmental engineering, Massachusetts Institute of Technology. https://dspace.mit.edu/handle/1721.1/34585.