تأثیر مخروطی بودن سپر حفاری در جابجایی و بار وارد بر خط لوله در زمین‌های لایه‌ای طی عملیات لوله‌ رانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد؛ دانشکده فنی و مهندسی، دانشگاه تربیت مدرس تهران

2 استادیار؛ دانشکده فنی و مهندسی، دانشگاه تربیت مدرس تهران

10.22044/tuse.2022.11623.1446

چکیده

امروزه اکثر سازه‌های زیرزمینی بصورت مکانیزه و با استفاده از سپرهای حفاری ایجاد می‌شوند. از چالش‌های اساسی در سازه‌های زیرزمینی تغییر‌شکل‌زمین است که تحلیل آن برای اهداف ایمنی و طراحی پروژه امری لازم و ضروری است. یکی از پارامترهای مؤثر در جابجایی زمین، شکل و هندسه سپر حفاری می‌باشد. با توجه به این که در عملیات لوله‌رانی لوله‌ها متصل به سپر حفاری هستند بنابراین اجازه رهایی تنش و جابجایی اولیه به محیط داده نمی‌شود. پس مخروطی لحاظ کردن سپر حفاری می‌تواند این مشکل را حل کند. این مطالعه تأثیر مخروطی بودن سپر حفاری در جابجایی زمین را مورد بررسی قرار داده و با سایر پارامترهای اساسی مقایسه شده است. از نرم افزار المان محدود پلکسیس برای مدل‌سازی عددی استفاده شده و نتایج حاصل از مدل‌سازی عددی با نتایج به‌دست‌آمده از مطالعات میدانی و تحلیلی کالیبره شده است. تأثیر بار وارده بر خط لوله نیز از فاکتورهایی است که مورد بررسی قرار گرفت. درنهایت مشخص گردید که رابطه مخروطی بودن سپر حفاری با جابجایی سطح زمین بصورت خطی می‌باشد. بار وارده بر خط لوله نیز با افزایش مخروطی بودن سپر از 3/0 % به 9/0 % تقریباً دو برابر می‌شود. یکی از مهم‌ترین کاربردهای این پژوهش، امکان کنترل جابجایی زمین با توجه پارامترها می‌باشد. 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of excavation shield conicality on displacement and stress on the pipeline in layered areas during pipe jacking operations

نویسندگان [English]

  • R. Mohannadpour 1
  • E. Taheri 2
1 rock mechanic ,Mining engineering, faculty of engineering, Tarbiat Modares University, Tehran, Iran
2 rock mechanic ,Mining engineering, faculty of engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Recently, most underground structures are mechanized using excavation shields. Moreover, one of the major challenges in underground structures is the ground deformation. So, the analysis of this mechanism is necessary for safety purposes and project design. One of the effective parameters in the ground displacement is the geometry of the excavation shield. Since the pipes are connected to the excavation shield, the initial stress relaxation and displacement are not allowed. In this regard, having a cone excavation shield can solve this problem. In this research the effect of excavation shield conicality on the ground is investigated. The Plaxis finite element software is utilized for numerical modeling. Moreover, in order to validation, the results are verified with the field data and analytical analysis. Furthermore, the effect of stress on the pipeline is also investigated in this research. Finally, it is found that the relationship between conical excavation shield and ground surface displacement is linear. The load on the pipeline almost doubles with increasing the percentage of conicality of the shield from 0.3% to 0.9%. One of the most important applications of this research is the possibility of controlling the ground movement with respect to the effective parameters.

کلیدواژه‌ها [English]

  • "pipe jacking
  • Cone excavation shield
  • ground displacement
  • Layered ground
  • Finite element
  • sensitivity analysis"
Barbera, L. I. (1993). Historical Development of Trenchless Construction Methods and Equipment in the United States. In Proceedings of Trenchless Technology Advanced Technical Seminar, Trenchless Technology Center, Vicksburg, MS.
Bergeson, W. (2014). Review of long drive microtunneling technology for use on large scale projects. Tunnelling and underground space technology, 39, 66-72.
Chen, Y. Z. (2019). A CEL study of bearing capacity and failure mechanism of strip footing resting on c-φ soils. . Computers and Geotechnics, 111, 126-136.
Cheng, Y. S. (2019). Attenuation characteristics of stress wave peak in sandstone subjected to different axial stresses. . Advances in Materials Science and Engineering.
Dias, D. K. (2000). Three dimensional simulation of slurry shield tunnelling. In Geotechnical aspects of underground construction on soft ground , (pp. 351-356).
FSTT, F. (2006). Microtunneling and Horizontal Drilling.
Gholamreza Zadeh, V., Taheri, E. (2022). Numerical modeling of crack pipe splitting operations in sand and clay. Tunnel and Underground Engineering, (10), 1-2
Ji, X. Z. (2019). A method to estimate the jacking force for pipe jacking in sandy soils. Tunnelling and Underground Space Technology, 90, 119-130.
Jia, P. J. (2019). Calculating jacking forces for circular pipes with welding flange slabs from a combined theory and case study. KSCE Journal of Civil Engineering, 23(4), 1586-1599.
Lv, J. L. (2020). Numerical simulations of construction of shield tunnel with small clearance to adjacent tunnel without and with isolation pile reinforcement. . KSCE Journal of Civil Engineering,, 24(1), 295-309.
Ma, W. W. (2021). Soil Layer Disturbance Caused by Pipe Jacking: Measurement and Simulation of a Case Study. KSCE Journal of Civil Engineering, 25(4), 1467-1478.
Manual plaxis 3D . (2020).
Mollon, G. D. (2013). Probabilistic analyses of tunneling-induced ground movements. Acta Geotechnica, 181-199.
Namli, M. &. (2017). Effect of bentonite slurry pressure on interface friction of pipe jacking. . Journal of Pipeline Systems Engineering and Practice, 8(2), 04016016.
Ni, P. M. (2018). Fragility analysis of continuous pipelines subjected to transverse permanent ground deformation. Soils and Foundations, 58(6), 1400-1413.
Niu, Z. C. (2020). A new method for predicting ground settlement induced by pipe jacking construction. Mathematical Problems in Engineering.
Singh, B., & Goel, R. K. (2006). Tunnelling in Weak Rocks. (J. A. Hudson, Ed.) Amsterdam: Elsevier B.V.
Song, Z. C. (2020). Mechanical properties of limestone from Maixi tunnel under hydro-mechanical coupling. Arabian Journal of Geosciences, 13, 1-13.
Song, Z. M. (2019). Optimization analysis of controlled blasting for passing through houses at close range in super-large section tunnels. Shock and Vibration.
Song, Z. P. (2018). Determination of equivalent blasting load considering millisecond delay effect. Geomechanics & engineering, 15(2), 745-754.
Song, Z. S. (2019). Research on management and application of tunnel engineering based on BIM technology. Journal of Civil Engineering and Management, 25(8), 785-797.
Song, Z. S. (2020). Study of the stability of tunnel construction based on double-heading advance construction method. Advances in Mechanical Engineering, 12(1), 1687814019896964.
Thomson, J. (2009). Microtunnelling and How We Got There Trenchless International.
Tian, X. S. (2019). Study on the propagation law of tunnel blasting vibration in stratum and blasting vibration reduction technology. Soil Dynamics and Earthquake Engineering, 126, 105813.
Wang, J. Z. (2020). Creep properties and damage constitutive model of salt rock under uniaxial compression. International Journal of Damage Mechanics, 29(6), 902-922.
Wu, H. Y. (2020). Review of application and innovation of geotextiles in geotechnical engineering. Materials, 13(7), 1774.
Yin, C. (2020). Hazard assessment and regionalization of highway flood disasters in China. Natural Hazards, 100(2), 535-550.
Zhang, K. C. (2019). Numerical analysis of pipelines settlement induced by tunneling. Advances in Civil Engineering.
Zhang, Y. W. (2019). Modeling of loess soaking induced impacts on a metro tunnel using a water soaking system in centrifuge. Geofluids.
Zhao, J. &. (2003). Stability analysis and modelling of underground excavations in fractured rocks.