شبیه‌سازی انتشار آلودگی لکوموتیو ER24PC در تونل قطار خط تهران-تبریز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 هیات علمی دانشگاه علم و صنعت

2 دانشجوی ارشد دانشکده مهندسی راه اهن گرایش ماشین های ریلی ددانشگاه علم و صنعت

چکیده

شبیه‌سازی جریان سیال درون تونل روشی مناسب برای مطالعه و بررسی پراکنش آلاینده‌ها و ارزیابی راندمان تهویه تونل می‌باشد. در این پژوهش به بررسی تونل خط تهران – تبریز که دارای طول 8 کیلومتر است و از آن لکوموتیو ER24PC عبور می‌کند، پرداخته می‌شود. این تونل به دلیل طویل بودن و عبور قطارهای دیزل و لزوم خروج گازهای حاصل از احتراق موتور دیزل، تأمین هوای تازه برای مسافران و تامین دمای مناسب برای سیستم موتور و کندانسورهای تهویه قطار حائز اهمیت است. در تحلیل عددی از نرم‌افزار فلوئنت استفاده‌شده است. براساس استاندارد آلایندگیEU III A مقادیر محصولات احتراقی خروجی از لکوموتیو به دست آمده و در جعبه ابزار، جزء انتقالی نسبت مولار آلاینده‌های خروجی از لکوموتیو ER24PC در نرم‌افزار وارد شده است. در حالت بحرانی دو قطار در این شبیه‌سازی درنظر گرفته شده است که با سرعت  با استفاده از مش دینامیکی و واردکردن کد حرکتی UDF، در دو خط به سوی یکدیگر حرکت می‌کنند. شبیه‌سازی با مدل آزمایشگاهی گزارش‌شده در مقالات تایید شده و عملکرد سیستم تهویه و حرکت قطار در پخش آلاینده‌ها و توزیع دما در طول تونل بررسی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of Pollutants Dispersion from ER24PC Locomotive in Tehran - Tabriz Tunnel

نویسندگان [English]

  • Mohammad Reza Talaee 1
  • Masood Faraji 2
1 IUST
2 MSc Student
چکیده [English]

Simulation of fluid flow within tunnel is an appropriate and relatively cheap way to investigate the spreading of the pollutants and the efficiency of tunnel ventilation system. In this research, the tunnel of Tehran-Tabriz line is studied from this aspect. This tunnel is 8 km long and 32 m width, and the locmomotive ER24PC  passes  from it. Ventilation of this tunnel is of great importance because of considerable length of the tunnel with 4 parallel lines in urban area and because of passage of the old diesel locomotives through it. Fluent software is used for numerical analysis and modeling of a length of 200 m of the tunnel. The species of each gases in combustion product mixture of ER24PC locomotive are obtained using emission standard EU III A. The molar ratio of pollutants in the exhaust of the locomotive is calculated using equilibrium equation of combustion, and then, is entered to the non-premixed combustion toolbox of the software to specify the volume fraction. In the critical case, two trains with a speed of 50 km/hr moving toward each other in the parallel lines are considered. The simulation is carried out by using dynamic mesh and UDF motion code. The simulation is validated by experimental work reported in references. The performance of ventilation system, temperature distribution along the tunnel and the effect of the motion of the train on spreading pollutants are investigated.
 
Summary
In this study, simulation of moving ER24PC (Siemens) locomotive in three dimensional (3D ) mode is made by using dynamic mesh in the Fluent software. The modeling of moving locomotives is a new idea in the field of tunnel ventilation. Thus, the distribution of outlet pollutants is investigated in both length and cross sections of the tunnel due to the motion of the train, and also, the effect of the motion of the train on spreading CO and Nox is investigated.
 
Introduction
Ventilation of tunnels is important in two applications of traffic and fire mode. In recent years, some disasters due to tunnel firing, for example in Baku or Daegu metro, have occurred that show the importance of fire and smoke ventilation in tunnels. The initiation of fire in tunnel produces a huge amount of smoke, which moves to the ceiling due to the buoyancy effect, and spread out in both sides. The task of tunnel ventilation system in this critical mode is to push the smoke into one side, and make a safe passage for passenger escape or rescue team.
 
Methodology and Approaches
In this study, locomotive emissions are simulated as a moving point and as a result, pollutants spread in 3D space. The combustion products of the locomotive are obtained by considering the MTU engine exhaust emissions and using Emission standard EU III A. The volume fraction of each pollutant is calculated from the equilibrium equation of combustion and is entered into the non-premixed combustion toolbox of the Fluent software. The moving train is modeled using dynamic mesh and employing UDF motion code. The velocity of the trian is considered to be 50 km/hr and two crossings against train are considered as a critical mode.
 
Results and Conclusions
In the case of no forced ventilation in tunnels, it can be seen that the motion of trains induces air flow passing above the train that causes the spread of smoke behind of the train. The maximum temperature and concentrations of pollutants happen above the chimney of the locomotive, and decrease toward the start point of motion. The temperature and concentration values of pollutants in the tunnel cross-section are independent when the incoming trains are at the near wall line or center line. The results also show that the concentrations of toxic gases from the ER24PC locomotive do not reach to the critical values as long as the locomotive in the tunnel is moved.

کلیدواژه‌ها [English]

  • Tunnel Ventilation
  • Locomotive Emission
  • Tehran – Tabriz Tunnel
  • Motion train
  • Dynamic mesh
Chen, F., Guo, S. C., Chuay, H. Y., & Chien, S. W. (2003a). Smoke control of fires in subway stations. Theoretical and computational fluid dynamics, 16(5), 349-368.

Chen, F., Chien, S. W., Jang, H. M., & Chang, W. J. (2003b). Stack effects on smoke propagation in subway stations. Continuum Mechanics and Thermodynamics, 15(5), 425-440.

Colella, F., Rein, G., Borchiellini, R., Carvel, R., Torero, J. L., & Verda, V. (2009). Calculation and design of tunnel ventilation systems using a two-scale modelling approach. Building and Environment, 44(12), 2357-2367.

Diesel Engines for Push-pull trains and locomotives with Emissions Stage EU III A, Engine model 16V 4000 R43L. Available from: www.desa.ir/fa/moshakhasatmtu.pdf

EU Emission Standards for Heavy-Duty Diesel and Gas Engines: Transient Testing, Tier Euro III, Test ETC, October 2000. Available from: https://www.dieselnet.com/standards /eu/hd.php

Hu, L. H., Peng, W., & Huo, R. (2008). Critical wind velocity for arresting upwind gas and smoke dispersion induced by near-wall fire in a road tunnel. Journal of Hazardous Materials, 150(1), 68-75.

Karki, K. C., Patankar, S. V., Rosenbluth, E., & Levy, S. (2000, November). CFD model for jet fan ventilation systems. In BHR group conference series publication (Vol. 43, pp. 355-380). Bury St. Edmunds; Professional Engineering Publishing;

Ke, M. T., Cheng, T. C., & Wang, W. P. (2002). Numerical simulation for optimizing the design of subway environmental control system. Building and Environment, 37(11), 1139-1152.

Kim, J. Y., & Kim, K. Y. (2007). Experimental and numerical analyses of train-induced unsteady tunnel flow in subway. Tunnelling and Underground Space Technology, 22(2), 166-172.

Mounesan, M., Talaee, M. R., & Molatefi, H. (2016). Investigation of Effective Parameters on Critical Ventilation Velocity in Underground Tunnels. Mechanical Engineering, 48(1).

National Fire Protection Association. (2014). NFPA 130: standard for fixed guideway transit and passenger rail systems. NFPA.

Pulkrabek, W. W. (1997). Engineering fundamentals of the internal combustion engine (No. 621.43 P8).

Ricco, P., Baron, A., & Molteni, P. (2007). Nature of pressure waves induced by a high-speed train travelling through a tunnel. Journal of Wind Engineering and Industrial Aerodynamics, 95(8), 781-808.

Tsai, K. C., Chen, H. H., & Lee, S. K. (2010). Critical ventilation velocity for multi-source tunnel fires. Journal of Wind Engineering and Industrial Aerodynamics, 98(10), 650-660.

Tsai, K. C., Lee, Y. P., & Lee, S. K. (2011). Critical ventilation velocity for tunnel fires occurring near tunnel exits. Fire Safety Journal, 46(8), 556-557.

White, F. M. (2003). Fluid mechanics. 5th. Boston: McGraw-Hill Book Company