Cao, W., Jiang, Y., Sakaguchi, O., Li, N., & Han, W. (2022). Predication of Displacement of Tunnel Rock Mass Based on the Back-Analysis Method-BP Neural Network. Geotechnical and Geological Engineering, 40(2), 531–544. https://doi.org/10.1007/s10706-021-01874-0
Chen, K., & Olarte, A. A. P. (2024a). Probabilistic Back Analysis Based on Nadam, Bayesian, and Matrix-Variate Deep Gaussian Process for Rock Tunnels. Rock Mechanics and Rock Engineering, 57(11), 9739–9758.
Chen, K., & Olarte, A. A. P. (2024b). Probabilistic Back Analysis Based on Nadam, Bayesian, and Matrix-Variate Deep Gaussian Process for Rock Tunnels. Rock Mechanics and Rock Engineering, 57(11), 9739–9758.
Cho, K.-H., Choi, M.-K., Nam, S.-W., & Lee, I.-M. (2006). Geotechnical parameter estimation in tunnelling using relative convergence measurement. International Journal for Numerical and Analytical Methods in Geomechanics, 30(2), 137–155.
Dehghan, A., Rezaei, F., & Ghanbari, A. (2010). Back-analysis of Karaj metro tunnel to determine geomechanical parameters of the enclosing soil mass. Engineering Geology, 3(2).
Gioda, G., & Maier, G. (1980). Direct search solution of an inverse problem in elastoplasticity: Identification of cohesion, friction angle and in situ stress by pressure tunnel tests. International Journal for Numerical Methods in Engineering, 15(12), 1823–1848.
Gioda, G., & Sakurai, S. (1987). Back analysis procedures for the interpretation of field measurements in geomechanics. International Journal for Numerical and Analytical Methods in Geomechanics, 11(6), 555–583.
Huang, H., Ooka, R., Chen, H., & Kato, S. (2009). Optimum design for smoke-control system in buildings considering robustness using CFD and Genetic Algorithms. Building and Environment, 44(11), 2218–2227.
Imen sazan Consulting Engineers. (2016). Imen sazan Consulting Engineers report- Kani-Sib tunnel.
Jia, W. Z., Hong, T. L., & Jin, L. Z. (2009a). Three-dimensional nonlinear finite element back-analysis method for rock mass parameters and initial stresses field in tunneling. Proceedings of the 2nd International Conference on Modelling and Simulation, ICMS2009, 1, 127–132.
Jia, W. Z., Hong, T. L., & Jin, L. Z. (2009b). Three-dimensional nonlinear finite element back-analysis method for rock mass parameters and initial stresses field in tunneling. Proceedings of the 2nd International Conference on Modelling and Simulation, ICMS2009, 1, 127–132.
Khamesi, H. (2011). Intelligent back analysis of Line 2 Metro-Karaj using Fuzzy systems [M.Sc.]. Shahrood University of Technology.
Khetwal, A., & Gutierrez, M. (2022). Assessing the effect of in-situ stress conditions in back-analysis of rock mass parameters of tunnels using machine learning techniques. 56th U.S. Rock Mechanics/Geomechanics Symposium.
Li, C. H., Peng, J. W., & Zaho, K. (2014). Back analysis of rock parameters based on neural network and FLAC. In Transit Development in Rock Mechanics (pp. 299–302). CRC Press. https://doi.org/10.1201/b17617-56
Li, H., Chen, W., Tan, X., & Tan, X. (2023). Back analysis of geomechanical parameters for rock mass under complex geological conditions using a novel algorithm. Tunnelling and Underground Space Technology, 136, 105099. https://doi.org/10.1016/j.tust.2023.105099
Mahmoudi, M., & Rajabi, A. M. (2020). Application of numerical back analysis for determination of soil mass specifications during tunnel construction. Arabian Journal of Geosciences, 13(19). https://doi.org/10.1007/s12517-020-05935-1
Miranda, T., Dias, D., Eclaircy-Caudron, S., Correia, A. G., & Costa, L. (2011). Back analysis of geomechanical parameters by optimisation of a 3D model of an underground structure. Tunnelling and Underground Space Technology, 26(6), 659–673.
Sakurai, S., & Takeuchi, K. (1983). Back analysis of measured displacements of tunnels. Rock Mechanics and Rock Engineering, 16, 173–180.
Sarikhani-Khorami, M. (2009). Analysis of Geomechanical Parameters and in situ Stresses of rock mass in the Isfahan - Shiraz railway Tunnel using back Analysis based on displacement monitoring. Isfahan University of Technology.
Sing, B., & Goel, R. K. (1999). Rock Mass Classification. Elsevier.
Vardakos, S., & Gutierrez, M. (2012). Applied back-analysis methods for tunneling using numerical modeling. 46th US Rock Mechanics / Geomechanics Symposium 2012, 3, 2150–2165.
Zhang, L. Q., Yue, Z. Q., Yang, Z. F., Qi, J. X., & Liu, F. C. (2006). A displacement-based back-analysis method for rock mass modulus and horizontal in situ stress in tunneling – Illustrated with a case study. Tunnelling and Underground Space Technology, 21(6), 636–649. https://doi.org/10.1016/j.tust.2005.12.001
Zhao, H., Chen, B., & Li, S. (2021). Determination of geomaterial mechanical parameters based on back analysis and reduced-order model. Computers and Geotechnics, 132, 104013.
Zhu, M., Peng, H., Liang, M., Song, G., Huang, N., Xie, W., & Han, Y. (2024). RC-XGBoost-Based Mechanical Parameters Back Analysis of Rock Mass in Heavily Fractured Tunnel: A Case in Yunnan, China. Rock Mechanics and Rock Engineering, 57(4), 2997–3019. https://doi.org/10.1007/s00603-023-03659-8.
Ziaei, A., & Ahangari, K. (2018). The effect of topography on stability of shallow tunnels case study: The diversion and conveyance tunnels of Safa Dam. Transportation Geotechnics, 14, 126–135. https://doi.org/10.1016/j.trgeo.2017.12.001.