مطالعه عددی آسیب‌پذیری شمع‌های گروهی در اثر تغییرشکل زمین ناشی از تونلسازی شهری؛ مطالعه موردی: خط ۷ متروی تهران

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار؛ گروه مهندسی معدن، دانشکده‌ی فنی مهندسی، دانشگاه لرستان

چکیده

حفاری تونل‌های کم‌عمق شهری منجر به جابجایی و تغییرشکل خاک اطراف و تاثیرگذاری بر پایداری سازه‌های مجاور سطحی و زیرسطحی می‌شود. تونل‌های شهری در مرحله ساخت ممکن است با انبوهی از پل‌های موجود برخورد کنند که دارای شمع‌هایی به‌عنوان تکیه‌گاه هستند. در این مقاله، از مدلسازی عددی برای بررسی اندرکنش بین تونل خط 7 مترو تهران و شمع‌های پایه پل قزوین استفاده شده است. هدف این تحقیق، ارزیابی تحمل‌پذیری و آسیب‌های احتمالی وارد پایه‌های پل ناشی از جابجایی‌ها و حرکات القایی خاک در اثر حفاری تونل خط 7 مترو تهران در زیر آن است. به‌منظور تحلیل تحمل‌پذیری پل، پارامترهای تغییرشکل شامل نشست، شیب و دوران نسبی شمع‌ها و سرشمع، به‌عنوان معیار آسیب انتخاب شده است. نتایج نشان می‌دهد که نشست ایجاد شده در زیر شمع‌ها و سازه سرشمع (به‌عنوان پی سازه پل)، کمتر از مقادیر مجاز است و موجب آسیب ساختاری به سازه پل نمی‌شود. بررسی پارامتر شیب و دوران نسبی القایی در شمع‌ها و سرشمع نیز نشان می‌دهد این تغییرشکل‌ها نیز در محدوده مجاز قرار داشته و خطر جدی برای پل ایجاد نمی‌کند. نتایج تحلیل دیاگرام نیروهای محوری-لنگرخمشی ایجاد شده در شمع‌ها نشان می‌دهد، شمع‌ها قادر به تحمل نیروهای وارده هستند. تحلیل حساسیت تغییرمکان-ها و جابه‌جایی‌های سرشمع نسبت به پارامترهای اجرایی نشان می‌دهد افزایش قابل توجه فشار سینه‌کار و فشار تزریق، نشست زیر سرشمع را به‌طور محسوسی کاهش نمی‌دهد و تاثیر چندانی بر کاهش نشست و آسیب شمع‌های نگهدارنده پل ندارد.

کلیدواژه‌ها

موضوعات


Ahmadi, M., Torkashvand, A., Badraddini, A., Sarfarazi, V., & Jahanmiri, S. (2023). Investigation of the influence of tunneling on bridge foundation in urban area. Geotechnical and Geological Engineering, 41(4), 2481-2499.
Association Française des Tunnels et de l'Espace Souterrain (2007), settlement induced by tunnelling.
Attewell, P. B., Yeates, J., & Selby, A. R. (1986). Soil movements induced by tunnelling and their effects on pipelines and structures.
Basile, F. (2014). Effects of tunnelling on pile foundations. Soils and Foundations, 54(3), 280-295.
Bel, J., Branque, D., Wong, H., Viggiani, G., & Losacco, N. (2016). Impact of tunneling on pile structures above the tunnel: Experimental study on a 1g reduced scale model of TBM. In ITA-AITES World Tunnel Congress (Vol. 4, pp. 3219-3229).
Bjerrum, L., & Lo, K. Y. (1963). Effect of again of the shear-strength properties of a normally consolidated clay. Geotechnique, 13(2), 147-157.
Boldini, D., Losacco, N., Franza, A., DeJong, M. J., Xu, J., & Marshall, A. M. (2021). Tunneling-induced deformation of bare frame structures on sand: Numerical study of building deformations. Journal of Geotechnical and Geoenvironmental Engineering, 147(11), 04021116.
Boonsiri, I., & Takemura, J. (2013). Behavior of pile group response to adjacent tunneling in sand using centrifuge modeling. ICPMG2014–Physical Modelling in Geotechnics, 697-703.
Boonyarak, T., Phisitkul, K., Ng, C.W., Teparaksa, W., Aye, Z.Z., (2014). Observed ground and pile group responses due to tunneling in Bangkok stiff clay. Can. Geotech. J. 51 (5), 479–495.
Chapman, T., Nicholson, D., & Luby, D. (2001, July). Use of the observational method for the construction of piles next to tunnels. In Proc. Int. Conf. response of buildings to excavation induced ground movements, London.
Dias, T. G. S., & Bezuijen, A. (2018). Load-transfer method for piles under axial loading and unloading. Journal of Geotechnical and Geoenvironmental Engineering, 144(1), 04017096.
Do, N. A., Dias, D., & Oreste, P. (2015). 3D numerical investigation on the interaction between mechanized twin tunnels in soft ground. Environmental Earth Sciences, 73, 2101-2113.
Elioab, E. K., Vua, H. U. N. G., Yvesa, B. O. H. A. L., Rasoola, M. E. H. D. I. Z. A. D. E. H., Michelb, K. H. O. U. R. I., Oliviera, D. E. C. K., & Pierreb, R. A. H. M. E. (2019). Influence of equivalent stiffness on the behavior of buildings subjected to soil settlements. Interface, 31(1000), 0-3.
Falord Industrial Projects (2013), Instrument monitoring report, line 7 of Tehran subway (In Persian)
Franza, A., Zheng, C., Marshall, A. M., & Jimenez, R. (2021). Investigation of soil–pile–structure interaction induced by vertical loads and tunnelling. Computers and Geotechnics, 139, 104386.
Franza, A., & Sheil, B. (2021). Pile groups under vertical and inclined eccentric loads: Elastoplastic modelling for performance based design. Computers and Geotechnics, 135, 104092.
Gabrielaitis, L., Papinigis, V., & Žaržojus, G. (2013). Estimation of settlements of bored piles foundation. Procedia Engineering, 57, 287-293.
 
Grant, R., Christian, J. T., & Vanmarcke, E. H. (1974). Differential settlement of buildings. Journal of the Geotechnical Engineering Division, 100(9), 973-991.
Heama, N., Jongpradist, P., Lueprasert, P., & Suwansawat, S. (2018). Investigation on pile-soil-tunnel interaction due to adjacent loaded pile row by 3D FEM. In MATEC Web of Conferences (Vol. 192, p. 02051). EDP Sciences.
Iran's national construction regulations, (2020) topic 9, design and implementation of reinforced concrete buildings.
Jongpradist, P., Kaewsri, T., Sawatparnich, A., Suwansawat, S., Youwai, S., Kongkitkul, W., & Sunitsakul, J. (2013). Development of tunneling influence zones for adjacent pile foundations by numerical analyses. Tunnelling and Underground Space Technology, 34, 96-109.
Kastner, R., Standing, J., & Kjekstad, O. (2003). Avoiding damage caused by soil-structure interaction: Lessons learnt from case histories: Thomas Telford.
Lambrughi, A., Rodríguez, L.M., Castellanza, R., (2012). Development and validation of a 3D numerical model for TBM–EPB mechanised excavations. Comput. Geotech. 40, 97–113.
Loganathan, N., Poulos, H. G., & Xu, K. J. (2001). Ground and pile-group responses due to tunnelling. Soils and Foundations, 41(1), 57-67.
Lueprasert, P., Jongpradist, P., Jongpradist, P., & Suwansawat, S. (2017). Numerical investigation of tunnel deformation due to adjacent loaded pile and pile-soil-tunnel interaction. Tunnelling and Underground Space Technology, 70, 166-181.
Mair, R., Taylor, R., Bracegirdle, A., (1993). Subsurface settlement profiles above tunnels in clays. Geotechnique 43 (2).
Mair, R., Taylor, R., & Burland, J. (1996). Prediction of ground movements and assessment of risk of building damage due to bored tunnelling. Paper presented at the Geotechnical aspects of underground construction in soft ground.
Meyerhof, G. G. (1959). Compaction of sands and bearing capacity of piles. Journal of the Soil Mechanics and Foundations Division, 85(6), 1-29.
Mollon, G., (2010). Etude déterministe probabiliste du comportement des tunnels. Lyon, France.
Mollon, G., Dias, D., Soubra, A.-H., (2013). Probabilistic analyses of tunneling-induced ground movements. Acta Geotech. 8 (2), 181–199. Do, N.A., Dias, D., Oreste,
Nematollahi, M., & Dias, D. (2019). Three-dimensional numerical simulation of pile-twin tunnels interaction–Case of the Shiraz subway line. Tunnelling and Underground Space Technology, 86, 75-88.
Ng, C. W. W., Soomro, M. A., & Hong, Y. (2014). Three-dimensional centrifuge modelling of pile group responses to side-by-side twin tunnelling. Tunnelling and Underground Space Technology, 43, 350-361.
Ng, C. W. W., Hong, Y., & Soomro, M. A. (2015). Effects of piggyback twin tunnelling on a pile group: 3D centrifuge tests and numerical modelling. Géotechnique, 65(1), 38-51.
PECK, R.B., HANSON, W.E., & THORNBURN, T.H., (1974). “Foundation Engineering”, John Wiley & Sons, 514p.
P., Djeran-Maigre, I., (2014). Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground. Tunn. Undergr. Space Technol. 42, 40–51.
Polshin, D. E., & Tokar, R. A. (1957, August). Maximum allowable non-uniform settlement of structures. In Proc., 4th Int. Conf. on Soil Mechanics and Foundation Engineering (Vol. 1, pp. 402-405). London: Butterworth’s.
Rieben, H. (1955). The geology of the Teheran plain. American Journal of Science, 253(11), 617-639.
SAHEL consulting corporation (2009). Geotechnical supplementary studies report, line 7 of Tehran subway (In Persian)
Sarfarazi, V., Asgari, K., & Abad, M. B. (2021). Interaction between tunnel and surface foundation using PFC2D. Journal of Mining and Environment, 12(3), 785-798.
Sarfarazi, V., Haeri, H., & Asgari, K. (2022). Three-dimensional Discrete Element Simulation of Interaction between Aqueduct and Tunnel. Periodica Polytechnica Civil Engineering, 66(1), 30-39.
Schroeder, F. C., Potts, D. M., & Addenbrooke, T. I. (2004). The influence of pile group loading on existing tunnels. Geotechnique, 54(6), 351-362.
Skempton, A. W., & MacDonald, D. H. (1956). The allowable settlements of buildings. Proceedings of the Institution of Civil Engineers, 5(6), 727-768.
Soomro, M. A., Hong, Y., Ng, C. W. W., Lu, H., & Peng, S. (2015). Load transfer mechanism in pile group due to single tunnel advancement in stiff clay. Tunnelling and Underground Space Technology, 45, 63-72.
Soomro, M. A., Ng, C. W. W., Liu, K., & Memon, N. A. (2017). Pile responses to side-by-side twin tunnelling in stiff clay: Effects of different tunnel depths relative to pile. Computers and Geotechnics, 84, 101-116.
Terzaghi, C., (1938). Settlement of structures in Europe and methods of observation. Transactions of the American Society of Civil Engineers, 103(1): p. 1432-1448.
Wade, R. B., (2004), “Practical foundation engineering handbook”, McGraw Hill.
WG Research, “ITA/AITES Report (2006). Settlements induced by tunneling in Soft Ground”, Tunnelling and Underground Space Technology, 22 (2007), 119-149.
Williamson, M. G., Mair, R. J., Devriendt, M. D., & Elshafie, M. Z. E. B. (2017). Open-face tunnelling effects on non-displacement piles in clay–part 2: tunnelling beneath loaded piles and analytical modelling. Géotechnique, 67(11), 1001-1019.
Withers, A. D. (2001). 42 Murdoch, Neptune and Clegg Houses in Moodkee Street, Rotherhithe. In Building response to tunnelling: case studies from construction of the Jubilee Line Extension, London (pp. 811-828). Thomas Telford Publishing.
Wroth, C., & Burland, J. (1974). Settlement of buildings and associated damage. In SOA Review, Conf. Settlement of Structures. Cambridge, UK: Pentech Press.
Yoo, C. (2014). Three dimensional numerical investigation on the effect of bridge construction on existing tunnel. KSCE Journal of Civil Engineering, 18, 794-802.