کنترل سلامت سازه جهت شناسایی خرابی‌ها در فضاهای زیرزمینی- مطالعه موردی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار؛ دانشکده‌ی مهندسی علوم زمین، دانشگاه صنعتی اراک

2 دانشجوی کارشناسی ارشد؛ دانشکده‌ی مهندسی علوم زمین، دانشگاه صنعتی اراک

10.22044/tuse.2022.11420.1438

چکیده

با توسعه و رشد جمعیت در شهرهای بزرگ؛ نیاز به استفاده از امکانات حمل‌ونقل همگانی مانند مترو رو به افزایش است. با توجه به اهمیت شبکه حمل‌ونقل شهری، توجه به کنترل سلامت سازه‌های زیرزمینی در برابر بارهای استاتیکی و دینامیکی بسیار حائز اهمیت می‌باشد. از آنجا که ایران یکی از کشورهای لرزه‌خیز جهان است در چند سال اخیر شاهد وقوع زلزله‌های مخرب و ویرانگری بوده و خسارت‌های سنگینی را به همراه داشته است. براساس مطالعات پیشین، سازه‌های زیرزمینی در برابر زلزله از ایمنی بیشتری برخوردار است. زیرا سازه‌های سطحی تنها در کف و سطح تحتانی به زمین متصل هستند. در صورتی که سازه‌های زیرزمینی درگیری کاملی با محیط دربرگیرنده داشته و در برابر بارهای زلزله مقاوم‌تر هستند. اما با این حال با توجه با اینکه اغلب متروها در خاک‌های کم‌ عمق شهری احداث می‌شوند، گزارش‌هایی از خسارت‌های سنگین و آسیب به این فضاهای زیرزمینی در برابر بار زلزله وجود داشته است. به همین دلیل شناسایی آسیب و کنترل سلامت فضاهای زیرزمینی بخصوص متروها از اهمیت بسیار زیادی برخوردار است. در این تحقیق، با توجه به عدم‌قطعیت در پارامترهای زمین و همچنین عدم پیش‌بینی دقیق از مسیر حفاری از نرم‌افزار 3DEC (در زمان برخورد با لایه‌های سنگی) در کنار نرم‌افزار PLAXIS3D2020 برای تحلیل استاتیکی و دینامیکی تونل خط 2 مترو مشهد استفاده شده است. بعلاوه در این تحقیق به منظور کنترل سلامت سازه (خط 2 مترو مشهد) از روش‌های تبدیل موجک (WT) استفاده شده است. به همین منظور سیگنال دریافتی توسط تحلیل‌های دینامیکی فراخوانی شده و با استفاده از جعبه ابزار تبدیل موجک در نرم‌افزار MATLAB، محل‌های آسیب در مدل (اطراف پوشش بتنی و مرزهای کناری) شناسایی شد که بدیهی است پس از شناسایی محل آسیب می‌توان با استفاده از سیستم نگهداری مناسب از ریزش سازه زیرزمینی در محل‌های شناسایی شده جلوگیری کرد. 

کلیدواژه‌ها


عنوان مقاله [English]

Structural health control to identify damages in underground spaces - A case study

نویسندگان [English]

  • H. Fattahi 1
  • H. Ghaedi 2
1 Department of Earth Sciences Engineering, Arak University of Technology, Arak, Iran
2 .
چکیده [English]

With the development and growth of the population in big cities; The need to use public transportation facilities such as the metro is growing. Given the importance of the urban transportation network, it is very important to pay attention to the health control of underground structures against static and dynamic loads. As Iran is one of the seismic countries in the world, in recent years it has witnessed devastating earthquakes and has caused heavy damage. According to previous studies, underground structures are more safe against earthquakes. Because surface structures are connected to the ground only on the floor and lower surface. If the underground structures are in full conflict with the surrounding environment and are more resistant to earthquake loads. However, given that most subways are built on shallow urban soils, there have been reports of severe damage to these underground spaces from earthquake loads. For this reason, identifying damage and controlling the health of underground spaces, especially subways, is very important. In this research, due to the uncertainty in the ground parameters and also the lack of accurate forecast of the drilling route, 3DEC software (when dealing with rock layers) along with PLAXIS3D2020 software has been used for static and dynamic analysis of Mashhad Metro Line 2 tunnel. In addition, in order to control the health of the structure (Mashhad Metro Line 2), wavelet transform (WT) methods have been used. For this purpose, the received signal was called by dynamic analysis and using the wavelet conversion toolbox in MATLAB software, damage areas were identified in the model (around the concrete cover and side borders), which obviously can be identified using the maintenance system. Properly prevented the collapse of the underground structure in the identified areas.

کلیدواژه‌ها [English]

  • Wavelet Transform
  • Damage detection
  • PLAXIS3D2020 software
  • 3DEC software
  • Health control of underground spaces
 
3DEC Verdion 5.20 Users Manual. (2019). Itasca Consulting Group, Inc.
Amezquita-Sanchez, J. P., Park, H. S., & Adeli, H. (2017). A novel methodology for modal parameters identification of large smart structures using MUSIC, empirical wavelet transform, and Hilbert transform. Engineering Structures, 147, 148-159.
Andreaus, U., & Casini, P. (2016). Identification of multiple open and fatigue cracks in beam-like structures using wavelets on deflection signals. Continuum Mechanics and Thermodynamics, 28(1-2), 361-378.
Babapour Mofrad, F., Abbaspour Tehrani-Fard, A., Ebrahimi, B., & Sardari, D. (2009). De-Noising SPECT Images from a Typical Collimator Using Wavelet Transform. Iranian Journal of Medical Physics, 6(3, 4), 1-12.
Bagheri, A., & Kourehli, S. (2013). Damage detection of structures under earthquake excitation using discrete wavelet analysis.
Bao, C., Hao, H., & Li, Z.-X. (2013). Multi-stage identification scheme for detecting damage in structures under ambient excitations. Smart materials and structures, 22(4), 045006.
Basarir, H. (2006). Engineering geological studies and tunnel support design at Sulakyurt dam site, Turkey. Engineering geology, 86(4), 225-237.
Burrus, C. S. (1997). Introduction to wavelets and wavelet transforms: a primer. Englewood Cliffs.
Chatterjee, P. (2015). Wavelet analysis in civil engineering. CRC Press Boca Raton, FL 33487-2742, USA.
Darvishan, E. (2019). Damage detection of cable-stayed bridges using frequency domain analysis and clustering. Amirkabir Journal of Civil Engineering, 51(4), 767-780.
Fayyadh, M. M., & Razak, H. A. (2012). Condition assessment of elastic bearing supports using vibration data. Construction and Building Materials, 30, 616-628.
Gökdağ, H., & Kopmaz, O. (2009). A new damage detection approach for beam-type structures based on the combination of continuous and discrete wavelet transforms. Journal of sound and vibration, 324(3-5), 1158-1180.
Gupta, S., Van den Berghe, H., Lombaert, G., & Degrande, G. (2010). Numerical modelling of vibrations from a Thalys high speed train in the Groene Hart tunnel. Soil Dynamics and Earthquake Engineering, 30(3), 82-97.
Kuhlemeyer, R. L., & Lysmer, J. (1973). Finite element method accuracy for wave propagation problems. Journal of the Soil Mechanics and Foundations Division, 99(5), 421-427.
Lelovic, S., & Vasovic, D. (2020). Determination of Mohr-coulomb parameters for modelling of concrete. Crystals, 10(9), 808.
Li, Y., Cheng, L., Yam, L., & Wong, W. O. (2002). Identification of damage locations for plate-like structures using damage sensitive indices: strain modal approach. Computers & structures, 80(25), 1881-1894.
Lunardi, P. (2008). Design and construction of tunnels: Analysis of Controlled Deformations in Rock and Soils (ADECO-RS). Springer Science & Business Media.
Mallat, S. (1999). A wavelet tour of signal processing. Elsevier.
Mangalathu, S., & Jeon, J.-S. (2020). Ground motion-dependent rapid damage assessment of structures based on wavelet transform and image analysis techniques. Journal of structural engineering, 146(11), 04020230.
Mertins, A., & Mertins, D. A. (1999). Signal analysis: wavelets, filter banks, time-frequency transforms and applications. John Wiley & Sons, Inc.
Mousavi Nejad Souq, S. S., & Baradaran, G. H. (2015). Crack detection in frame Structures with regard to changes in natural frequencies by using finite element method and ACOR. Modares Mechanical Engineering, 15(8), 51-58.
Ovanesova, A., & Suarez, L. E. (2004). Applications of wavelet transforms to damage detection in frame structures. Engineering Structures, 26(1), 39-49.
Özaydın, S., & Alak, İ. K. (2019). Speech Enhancement using Maximal Overlap Discrete Wavelet Transform Method.
PLAXIS3D Verdion 4 Users Manual. (2020). Itasca Consulting Group, Inc.
Rajabzadeh Women, M., Nikkhah, M., & zare, s. (1388). Analytical evaluation of Mashhad Metro Line 2 tunnel against seismic loads and investigation of various factors affecting it. In Consulting Engineers Hope for Sustainable Life.
Silik, A., Noori, M., Altabey, W. A., Dang, J., Ghiasi, R., & Wu, Z. (2021). Optimum wavelet selection for nonparametric analysis toward structural health monitoring for processing big data from sensor network: A comparative study. Structural Health Monitoring, 14759217211010261.
Spanos, P. D., & Failla, G. (2005). Wavelets: Theoretical concepts and vibrations related applications. The Shock and Vibration Digest, 37(5), 359-376.
Stubbs, N., & Kim, J.-T. (1996). Damage localization in structures without baseline modal parameters. AIAA journal, 34(8), 1644-1649.
Tarinejad, R., & Damadipour, M. (2014). Modal identification of structures by a novel approach based on FDD-wavelet method. Journal of sound and vibration, 333(3), 1024-1045.
Tarinejad, R., & Damadipour, M. (2016). Extended FDD-WT method based on correcting the errors due to non-synchronous sensing of sensors. Mechanical systems and signal processing, 72, 547-566.
Viero, P. F., & Roitman, N. (1999). Application of some damage identification methods in offshore platforms. Marine Structures, 12(2), 107-126.
Xin, Y., Hao, H., & Li, J. (2019). Operational modal identification of structures based on improved empirical wavelet transform. Structural Control and Health Monitoring, 26(3), e2323.
Zhong, S., & Oyadiji, S. O. (2011). Detection of cracks in simply-supported beams by continuous wavelet transform of reconstructed modal data. Computers & structures, 89(1-2), 127-148.
Zhu, W., Li, Z., Zhu, L.-k., & Tang, C. (2010). Numerical simulation on rockburst of underground opening triggered by dynamic disturbance. Tunnelling and Underground Space Technology, 25(5), 587-599.
Zhu, X., & Law, S. (2006). Wavelet-based crack identification of bridge beam from operational deflection time history. International journal of solids and structures, 43(7-8), 2299-2317.