بررسی اثر اندرکنش ساختمان، خاک و تونل دایره‌ای کم عمق بر پاسخ لرزه‌ای ساختمان 20 طبقه SAC

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار: دانشکده فنی و مهندسی، دانشگاه مراغه

2 استادیار: دانشکده مهندسی عمران، دانشگاه علم و صنعت

3 دانشجوی کارشناسی ارشد: دانشکده فنی و مهندسی، دانشگاه مراغه

چکیده

ز دیدگاه ژئوتکنیـک لـرزه‌ای، تأثیر تونل‌هـای داخل شهری بر پاسخ لـرزه‌ای سطح زمین و محیط اطراف آشـکار شـده اسـت. در این مقاله با در نظر گرفتن اندرکنش سیستم ساختمان-خاک-تونل، اثر وجود تونل دایره‌ای کم عمق بر پاسخ لرزه‌ای ساختمان 20 طبقه معیار SAC مورد بررسی قرار می‌گیرد. سیستم اندرکنش ساختمان-خاک-تونل به صورت دو بعدی و با در نظر گرفتن رفتار غیرخطی مصالح خاک با استفاده از روش معادل خطی مدل شده است. از 8 رکورد زلزله جهت بررسی عملکرد لرزه‌ای این ساختمان استفاده شده است. در این مطالعه اثر فاصله افقی و قائم محور تونل دایره‌ای از مرکز پی، فرکانس تحریک، انعطاف‌پذیری تونل و همچنین نوع خاک ساختگاه بر پاسخ لرزه‌ای ساختمان مورد بررسی قرار گرفته است. نتایج نشان می‌دهد برای موج سینوسی، بیشترین تاثیر بزرگنمایی شتاب پای سازه در فاصله افقی 4 برابر شعاع تونل می‌باشد و با کاهش نسبت پریود بی‌بعد، تاثیر تونل بر بزرگنمایی شتاب بیشتر می‌شود که به دلیل عبور امواج با طول موج‌های کوتاه‌تر است. برای امواج لرزه‌ای، تغییرات جابجایی بام و شتاب پای سازه در حضور تونل، برای خاک نوع IV بیشتر از خاک نوع II و III می‌باشد. افزایش شتاب پای سازه در حضور تونل، حداکثر برابر 46 درصد و افزایش جابجایی بام، حداکثر برابر 54 درصد برای خاک نوع IV می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the effect of building soil and shallow circular tunnel interaction on the seismic response of a 20-story SAC building

نویسندگان [English]

  • M. Fahimi Farzam 1
  • B. Alinejad 1
  • A.R. Saeedi Azizkandi 2
  • R. Alinejad 3
1 Dean of Engineering Faculty and Head of Civil Engineering Department maragheh university
2 Civil Engineering Department, University of Science and Technology, Tehran, Iran
3 Department of civil engineering, faculty of engineering, university of maragheh,maragheh.iran
چکیده [English]

From a seismic geotechnical point of view, the effect of underground structures such as inner tunnels on the seismic response of the earth's surface and the surrounding environment has been revealed by researchers. In this paper ، considering the building-soil-tunnel system interaction ، the effect of shallow tunnel presence on the seismic response of the 20-story, SAC benchmark building is investigated. The building-soil-tunnel interaction system is modeled in two dimensions and considering the nonlinear behavior of soil materials using the equivalent linear method. 8 benchmark earthquake records have been used to evaluate the seismic performance of this building. In this study, the effect of horizontal and vertical tunnel distance, excitation frequency, and flexibility ratio, as well as site soil type on the seismic response of the building, has been investigated. The results show that for the sine wave, the maximum effect of acceleration magnification is observed in the horizontal distance ratio of 4, and by decreasing the dimensionless period ratio, the tunnel effect on the magnification increases due to the passage of waves with shorter wavelengths. Additionally, the maximum roof displacement and base acceleration for soil type IV are larger than type III and type III is larger than type II. Also, for soil type IV, the maximum amplification of roof displacement and base acceleration is 54 and 46 percent respectively.

کلیدواژه‌ها [English]

  • Soil-Structure- Interaction
  • linear equivalent
  • Seismic Response
  • FLAC2D
Abate, G., & Massimino, M. R. (2017a). Numerical modelling of the seismic response of a tunnel–soil–aboveground building system in Catania (Italy). Bulletin of Earthquake Engineering, 15(1), 469-491.
Abate, G., & Massimino, M. R. (2017b). Parametric analysis of the seismic response of coupled tunnel–soil–aboveground building systems by numerical modelling. Bulletin of Earthquake Engineering, 15(1), 443-467.
Alielahi, H., & Adampira, M. (2016a). Effect of twin-parallel tunnels on seismic ground response due to vertically in-plane waves. International Journal of Rock Mechanics and Mining Sciences, 85, 67-83.
Alielahi, H., & Adampira, M. (2016b). Seismic effects of two-dimensional subsurface cavity on the ground motion by BEM: Amplification patterns and engineering applications. International Journal of Civil Engineering, 14(4), 233-251.
Alielahi, H., & Adampira, M. (2016c). Site-specific response spectra for seismic motions in half-plane with shallow cavities. Soil Dynamics and Earthquake Engineering, 80, 163-167.
Alielahi, H., Adampira, M., & Asgari, M. (2017). Influence of double tunnels on seismic amplification pattern of ground surface using BEM. SHARIF: CIVIL ENINEERING, 33-2(3.2), 29-41.
Alielahi, H., Kamalian, M., & Adampira, M. (2015). Seismic ground amplification by unlined tunnels subjected to vertically propagating SV and P waves using BEM. Soil Dynamics and Earthquake Engineering, 71, 63-79.
Alielahi, H., Kamalian, M., & Adampira, M. (2016). A BEM investigation on the influence of underground cavities on the seismic response of canyons. Acta Geotechnica, 11(2), 391-413.
Alielahi, H., Kamalian, M., Asgari Marnani, J., Jafari, M. K., & Panji, M. (2013). Applying a time-domain boundary element method for study of seismic ground response in the vicinity of embedded cylindrical cavity. International Journal of Civil Engineering, 11(1), 45-54.
Alielahi, H., & Ramazani, M. S. (2016). surface seismic amplification pattern assessment in sites over underground box structures. Bulletin of earthquake science and engineering, 3(1), 55-71.
Baziar, M. H., Ghalandarzadeh, A., & Rabeti Moghadam, M. (2015). Tehran Subway Tunnel Effect on the Seismic Response of the Ground Surface with Linear Soil Behavior: An Experimental and Numerical Study. Earthquake Engineering.
Baziar, M. H., Rabeti Moghadam, M., Kim, D. S., & Choo, Y. W. (2014). Effect of underground tunnel on the ground surface acceleration. Tunnelling and Underground Space Technology, 44, 10-22.
Baziar, M. H., Rabeti Moghadam, M., Kim, D. S., & Choo, Y. W. (2016). effect of underground structure lining flexibility on acceleration response at ground surface. SHARIF: CIVIL ENINEERING.
Beshart, V., & Majidzamani, S. (2017). Seismic Responce of ground Surface Tehran Subway. Earthquake Engineering.
Fatahi, B., & Tabatabaiefar, S. H. R. (2014a). Effects of soil plasticity on seismic performance of mid-rise building frames resting on soft soils. Advances in Structural Engineering, 17(10), 1387-1402.
Fatahi, B., & Tabatabaiefar, S. H. R. (2014b). Fully nonlinear versus equivalent linear computation method for seismic analysis of midrise buildings on soft soils. International Journal of Geomechanics, 14(4).
Fatahi, B., Tabatabaiefar, S. H. R., & Samali, B. (2014). Soil-structure interaction vs Site effect for seismic design of tall buildings on soft soil. Geomechanics and Engineering, 6(3), 293-320.
Guo, J., Chen, J., & Bobet, A. (2013). Influence of a subway station on the inter-story drift ratio of adjacent surface structures. Tunnelling and Underground Space Technology, 35, 8-19.
Guobo, W., mingzhi, y., Yu, M., Jan, w., & Yaxi, W. (2018). Experimental study on seismic response of underground tunnel-soil-surface structure interaction system. Tunnelling and Underground Space Technology, 76, 145-159.
Hassani, N., Bararnia, M., & Ghodrati Amiri, G. (2018). Effect of soil-structure interaction on inelastic displacement ratios of degrading structures. Soil Dynamics and Earthquake Engineering, 104, 75-87.
Hokmabadi, A. S., Fatahi, B., & Samali, B. (2015). Physical Modeling of Seismic Soil-Pile-Structure Interaction for Buildings on Soft Soils. International Journal of Geomechanics, 15(2), 04014046.
Kausel, E. (2010). Early history of soil-structure interaction. Soil Dynamics and Earthquake Engineering, 30(9), 822-832.
Khalajzadeh, M. H., & Azadi, M. (2019). The Effects of Tunnel Excavation on the Seismic Response of Ground Surface Using Finite Difference Method. Amirkabir Journal of Civil Engineering, 51(1), 99-108.
Kuhlemeyer, R. L., & Lysmer, J. (1973). Finite element method accuracy for wave propagation problems Journal of the Soil Mechanics and Foundations Division, 99(5), 421-427.
Mylonakis, G., & Gazetas, G. (2000). Seismic soil-structure interaction: Beneficial or detrimental? Journal of Earthquake Engineering, 4(3), 277-301.
Naderpour, h., Vosoughifar, h. R., & Ghobakhloo, e. (2016). Evaluation of effective parameters on wave diffraction of far-fault ground motions using artificial neural networks. SHARIF: CIVIL ENINEERING, 32-2(1.1), -.
Naseem, A., Schotte, K., De Pauw, B., & De Backer, H. (2019). Ground Settlements due to Construction of Triplet Tunnels with Different Construction Arrangements. Advances in Civil Engineering, 2019.
Ohtori, Y., Christenson, R. E., Spencer Jr, B. F., & Dyke, S. J. (2004). Benchmark control problems for seismically excited nonlinear buildings. Journal of Engineering Mechanics, 130(4), 366-385.
Panji, m., & fakhravar, a. (2017). Amplification pattern of seismic ground surface in the presence of underground horseshoe tunnel subjected to incident sh-wave. BULLETIN OF EARTHQUAKE SCIENCE AND ENGINEERING, 4(2 ), 49-66.
Priestley, N. M. J. (1993). Myths and fallacies in earthquake engineering-conflicts between design and reality. Bulletin of the New Zealand National Society for Earthquake Engineering, 26(3), 329-341.
Rabeti Moghadam, M., & Baziar, M. H. (2016). Seismic ground motion amplification pattern induced by a subway tunnel: Shaking table testing and numerical simulation. Soil Dynamics and Earthquake Engineering, 83, 81-97.
Rayhani, M. H. T., & El Naggar, M. H. (2008). Numerical modeling of seismic response of rigid Foundation on soft soil. International Journal of Geomechanics, 8(6), 336-346.
S. Kolbadi, S. M., & Rasti Ardakani, R. (2017). Evaluation of Soil-Structure Interaction Parameters in Static and Dynamic Response of the Retaining. Amirkabir J. Civil Eng, 49(2), 323-334
Sarlak, A., Saeedmonir, H., & Gheyratmand, C. (2017). Numerical and experimental study of soil-structure interaction in structures resting on loose soil using laminar shear box. International Journal of Engineering, Transactions B: Applications, 30(11), 1654-1663.
Tabatabaiefar, H. R., & Massumi, A. (2010). A simplified method to determine seismic responses of reinforced concrete moment resisting building frames under influence of soil-structure interaction. Soil Dynamics and Earthquake Engineering, 30(11), 1259-1267.
Tabatabaiefar, S. H. R., Fatahi, B., & Samali, B. (2016). Numerical and Experimental Investigations on Seismic Response of Building Frames under Influence of Soil-Structure Interaction. Advances in Structural Engineering, 17(1), 109-130.
Trifunac, M. D. (2016). Site conditions and earthquake ground motion – A review. Soil Dynamics and Earthquake Engineering, 90, 88-100.
Turan, A., Hinchberger, S. D., & El Naggar, M. H. (2013). Seismic soil–structure interaction in buildings on stiff clay with embedded basement stories. Canadian Geotechnical Journal, 50(8), 858-873.
Wang, H. F., Lou, M. L., Chen, X., & Zhai, Y. M. (2013). Structure-soil-structure interaction between underground structure and ground structure. Soil Dynamics and Earthquake Engineering, 54, 31-38.