تحلیل لرزه ‏ای سطح زمین در حضور تونل پوشش‏ دار زیرزمینی در برابر امواج مهاجم قائم P/SV و SH: یک مطالعه‌ی مقایسه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار؛ گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد زنجان

2 دانشجوی دکتری تخصصی؛ گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد زنجان

3 دانشجوی کارشناسی ارشد؛ گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد زنجان

چکیده

در این مقاله به تعیین پاسخ لرزه‏ای سطح زمین در برابر امواج مهاجم قائم P/SV و SH در حضور یک تونل زیرزمینی پوشش‏دار دایره‏ای پرداخته شده است. در این راستا از روش اجزای محدود سه‏بعدی در قالب نرم‏افزار عددی آباکوس برای مدل‌سازی بهره گرفته شده ‏است. ضمن ارائه‌ی مختصر مبانی نظری حاکم بر روش اجزای محدود و حل یک مثال صحّت‏سنجی، با در نظر گرفتن برخی پارامترهای کلیدی از قبیل عمق تونل و نسبت امپدانس پوشش نگهدارنده با محیط پیرامون، پاسخ سطح زمین حساسیّت‌سنجی شده است. در ادامه، یک مطالعه‌ی مقایسه‏ای بین نتایج سه‏بعدی حاصل و پاسخ‏های دوبعدی اجزای مرزی نیم‏فضا انجام شده است. نتایج نشان داد در نسبت‌ عمق 5 و 8 به ترتیب برای امواج P/SV و SH اثر حضور تونل از بین رفته و پاسخ به سمت حرکت میدان آزاد سطح زمین همگرا شده است. همچنین، در حالت هجوم امواج درون‌صفحه‌ی P/SV افزایش هر واحد نسبت امپدانس حداقل به میزان 5% در کاهش پاسخ افقی سطح بالای تونل مؤثر بوده، امّا در هجوم امواج برون صفحه SH، نتایج معکوس به چشم می‌خورد. دست‌آوردهای حاصل می‏تواند در تکمیل و تدقیق آیین‏نامه‏های لرزه‏ای موجود پیرامون موضوع ریز‌پهنه‏بندی ساختگاه در حضور بازشدگی زیر‏سطحی مثمر ثمر باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Seismic Analysis of the Surface in the Presence of Underground Lined Tunnel Subjected to vertical incident P/SV & SH-Waves: A Comparative Study.

نویسندگان [English]

  • M. Panji 1
  • S. Mojtabazadeh-Hasanlouei 2
  • A. Qiasvand 3
1 Department of Civil Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
2 Department of Civil Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
3 Department of Civil Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
چکیده [English]

In this paper, the seismic response of the surface in the presence of a circular underground lined tunnel subjected to vertical incident P/SV and SH-waves were obtained. In this regard, the three-dimensional (3D) finite element method (FEM) approach in the framework of ABAQUS numerical software was used for preparing the model. At first, a brief presentation of FEM formulation as well as solving a validation example was carried out. Then, by considering some key parameters such as tunnel depth, and the impedance ratio of the lining, the response of the ground surface was sensitized. In the following, a comparative study was performed between the responses of 3D-FEM and 2D half-plane boundary element method (2D-BEM). The results showed that the mentioned parameters are very effective in the formation of different patterns of ground motion. Furthermore, a slight increase of amplitudes is observed in the responses of the 3D approach compared to 2D modeling. The results of the present study can be used to complete the accuracy of existing seismic codes around the subject of micro-zonation of the site in the presence of subsurface openings as well.

کلیدواژه‌ها [English]

  • 3D Modeling
  • ABAQUS
  • Amplification
  • Boundary Element Method
  • Finite Element Method
  • Lined Tunnel
  • Seismic Response
Balendra, T., Thambiratnam, D.P., Koh, C.G., Lee, S.L. (1984). Dynamic response of twin circular tunnels due to incident SH-waves. Earthq Eng Struct Dyn, 12(2), 181-201.
Ba Z., Yin X., (2016). Wave scattering of complex local site in a layered half-space by using a multidomain IBEM: incident plane SH-waves, Geophys J Int, 205, 1382-1405.
Chin, Y.F., Rajapakse, R.K.N.D., Shah, A.H., Datta, S.K. (1987). Dynamics of buried pipes in back-filled trench. Soil Dyn Earthq Eng, 6(3), 158-163.
Chen, J.T., Lee, J.W., Wu, C.F., Chen, I.L. (2011). SH-wave diffraction by a semi-circular hill revisited: a null-field boundary integral equation method using degenerate kernels. Soil Dyn Earthq Eng, 31, 729-736.
Dominguez, J., Gallego, R., (1991). The time domain boundary element method for elastodynamic problems. Math Comp Model, 15(3-5), 119-129.
Davis, C.A., Lee, V.W., Bardet, J.P. (2001). Transverse response of underground cavities and pipes to incident SV-waves. Earthq Eng Struct Dyn. 30(3), 383-410.
Esmaeili, M., Vahdani, S., Noorzad, A. (2006). Dynamic response of lined tunnel to plane harmonic waves. Tunnel Undergr Space Technol, 21, 511-519.
Gizzi, F.T., Masini, N. (2006). Historical damage pattern and differential seismic effects in a town with ground cavities: A case study from Southern Italy. Eng Geolog, 88(1-2), 41-58.
Huang, M., Pan, B.Y. (2012). Dynamic stress concentration of underground lined cavities in different distance under incident plane SV-wave. Adv Mater Res, 446-449, 2317-2320.
Huang, J.Q., Du, X.L., Jin, L., Zhao, M. (2016). Impact of incident angles of P-waves on the dynamic response of long lined tunnels. Earthq Eng Struct Dyn, 45(15), 2435-2454.
Jiang, l., Chen, J. (2010). Seismic response of underground utility tunnels: shaking table testing and FEM analysis. Earthq Eng Eng Vib, 9(4), 555-567.
Kuhlemeyer R.L. and Lysmer J. (1973). Finite element method accuracy for wave propagation problems. J Soil Mech Found Div, 99(5), 421-427.
Kamalian, M., Gatmiri, B., Sohrabi-Bidar, A., (2003). On time-domain two-dimensional site response analysis of topographic structures by BEM. J Seism Earthq Eng, 5(2), 35-45.
Kamalian, M., Jafari, M.K., Sohrabi-Bidar, A., Razmkhah, A., Gatmiri, B. (2006). Time-domain two-dimensional site response analysis of non-homogeneous topographic structures by a hybrid FE/BE method. Soil Dyn Earthq Eng, 26(8), 753-765.
Kazemeini, M.J., Haghshenas, E., Kamalian, M. (2015). Experimental evaluation of seismic site response over and nearby underground cavities (Study of subway tunnel in city of Karaj, Iran). Iran J Sci Tech-Transact Civ Eng, 39, 319-322.
Lysmer, J., Drake, L.A. (1972). A finite element method for seismology, Meth Comp Phys. Ed Bolt BA, Academic Press, New York. 11, 181-216.
Lee, V.W., Trifuanc, M.D., (1979). Response of tunnels to incident SH-waves. J Eng Mech Div, ASCE, 105(4), 643-659.
Lee, V.W., Karl, J. (1992). Diffraction of SV-waves by underground, circular, cylindrical cavities. Soil Dyn Earthq Eng, 11(8), 445-456.
Luco, J.E., de Barros, F.C.P., (1994). Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half‐space. Earthq Eng Struct Dyn, 23(3), 321-340.
Lee, V.W., Manoogian, M.E., (1995). Surface motion above an arbitrary shape underground cavity for incident SH-waves. J Europ Earthq Eng, 7(1), 3-11.
Liang, J., Zhang, H., Lee, V.W. (2003). A series solution for surface motion amplification due to underground twin tunnels: incident SV-waves. Earthq Eng Eng Vib, 2(2), 289-298.
Liang, J.W., Lee, V.W., Zhang, H. (2004). A series solution for surface motion amplification due to underground group cavities: Incident P-waves. Acta Seismol Sinica, 17(3), 296-307.
Liu, D.K. Lin, H. (2004). Scattering of SH-waves by an interacting interface linear crack and a circular cavity near bimaterial interface. Acta Mech Sinica, 20(3), 317-326.
Liao, W.I., Yeh, C.S., Teng, T.J. (2008). Scattering of elastic waves by a buried tunnel under obliquely incident waves using T matrix. J Mech, 24(4), 405-418.
Liang, J., Luo, H., Lee, V.W., (2010). Diffraction of plane SH-waves by a semi-circular cavity in half-space. Earthq Sci, 23(1), 5-12.
Li, Y.S., Li, T.B., Zhang, X. (2012). Response of shallow-buried circular lining tunnel to incident P-wave. Appl Mech Mater, 160, 331-336.
Liu, Q., Zhao, M., Wang, L. (2013). Scattering of plane P, SV or Rayleigh-waves by a shallow lined tunnel in an elastic half-space. Soil Dyn Earthq Eng, 49, 52-63.
Liu, Z., Liu, L. (2015). An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space. Earthq Sci, 28(1), 71-86.
Liu, Q., Zhang, Ch., Todorovska, M.I. (2016). Scattering of SH-waves by a shallow rectangular cavity in an elastic half space. Soil dyn Earthq Eng, 90, 147-157.
Liu, Z., Wang, Y., Liang, J. (2016). Dynamic interaction of twin vertically overlapping lined tunnels in an elastic half-space subjected to incident plane waves. Earthq Sci, 29(3), 185-201.
Lee, Y.T., Chen, J.T., Kuo S.R. (2019). Semi-analytical approach for torsion problems of a circular bar containing multiple holes/cracks. Eng Fract Mech, 219. 106547.
Mansur, W.J., (1983). A time-stepping technique to solve wave propagation problems using the boundary element method [Ph.D. dissertation]. University of Southampton.
Moore, I.D., Guan, F. (1996). Three-dimensional dynamic response of lined tunnels due to incident seismic waves. Earthq Eng Struct Dyn, 25(4), 357-369.
Manoogian, M.E. (2000). Scattering and diffraction of SH-waves above an arbitrarily shaped tunnel. ISET J Earthq Technol, 37(1-3), 11-26.
Nohegoo‑Shahvari, A., Kamalian, M., Panji, M. (2018). Two-dimensional dynamic analysis of alluvial valleys subjected to vertically propagating incident SH-waves. Int J Civ Eng, 17, 823-839.
Nohegoo‑Shahvari, A., Kamalian, M., Panji, M. (2019). A hybrid time-domain half-plane FE/BE approach for SH-wave scattering of alluvial sites. Eng Analy BE, 105, 194-206.
Panji, M., Kamalian, M., Asgari-Marnani, J., Jafari, M.K., (2013). Transient analysis of wave propagation problems by half-plane BEM. Geophys J Int. 194, 1849-1865.
Parvanova, S.L., Dineva, P.S., Manolis, G.D., Wuttke, F. (2014). Seismic response of lined tunnels in the half-plane with surface topography. Bull Earthq Eng, 12(2), 981-1005.
Panji, M., Kamalian, M., Asgari-Marnani, J., Jafari, M.K. (2014). Antiplane seismic response from semi-sine shaped valley above embedded truncated circular cavity: a time-domain half-plane BEM. Int J of Civ Eng, 12(2), 194-206.
Panji, M., Ansari, B., (2017). Transient SH-wave scattering by the lined tunnels embedded in an elastic half-plane. Eng Analy BE, 84, 220-230.
Panji, M., Mojtabazadeh-Hasanlouei, S., (2018). Time-history responses on the surface by regularly distributed enormous embedded cavities: Incident SH-waves. Earthq Sci, 31, 1-17.
Panji M., Mojtabazadeh-Hasanlouei S., (2019). Seismic amplification pattern of the ground surface in presence of twin unlined circular tunnels subjected to SH-waves [In Persian]. J Transp Infrast Eng, 5(3), 111-134.
Panji, M., Mojtabazadeh-Hasanlouei, S., Yasemi, F., (2020). A half-plane time-domain BEM for SH-wave scattering by a subsurface inclusion. Comp Geosci, 134, 104342.
Panji, M., Mojtabazadeh-Hasanlouei, S., (2020). Transient response of irregular surface by periodically distributed semi-sine shaped valleys: Incident SH-waves. J Earthq Tsu, 14(1), 2050005.
Ricker, N. (1953). The form and laws of propagation of seismic wavelet. Geophys, 18(1), 10-40.
Rabeti-Moghadam, M., Baziar, M.H. (2016). Seismic ground motion amplification pattern induced by a subway tunnel: Shaking table testing and numerical simulation. Soil Dyn Earthq Eng, 83, 81-97.
Smith, W.D. (1975). The application of finite element analysis to body wave propagation problems. Geophys J Royal Astronom Soc, 42(2), 747-768.
Smerzini, C., Aviles, J., Paolucci, R., Sanchez-Sesma, F.J. (2009). Effect of underground cavities on surface earthquake ground motion under SH-wave propagation. Earthq Eng Struct Dyn, 38, 12, 1441-1460.
Tsaur, D.H., Chang, K.H. (2012). Multiple scattering of SH-waves by an embedded truncated circular cavity, J Marine Sci Tech, 20(1), 73-81.
Verrucci, L., Lanzo, G., Pagliaroli, A., Sanò, T. (2012). Effects of cavities on seismic ground response. In: proceeding second international conference on performance-based design in earthquake geotechnical engineering.
Wong, K.C., Shah, A.H., Datta, S.K. (1985). Dynamic stresses and displacements in a buried tunnel. J Eng Mech, 111(2), 218-234.
Wang, L., Xu, Y., Xia, J., Luo, Y. (2015). Effect of near-surface topography on high-frequency Rayleigh-wave propagation. J Appl Geophys, 116, 93-103.
Xu, H., Li, T., Xu, J., Wang, Y. (2014). Dynamic response of underground circular lining tunnels subjected to incident P-waves. Math Probl Eng, 2014(4), 1-11.
Yeh, C.S., Teng, T.J., Shyu, W.S., Tsai, I.C. (2002). A hybrid method for analyzing the dynamic responses of cavities or shells buried in an elastic half-plane. J Mech, 18(2), 75-87.
Yu, C., W. Dravinski, M. (2009). Scattering of plane harmonic SH-wave by a completely embedded corrugated scatterer. Int J Numer Meth Eng, 78, 196-214.
Yiouta-Mitra, P., Kouretzis, G., Bouckovalas, G., Sofianos, A. (2007). Effect of underground structures in earthquake resistant design of surface structures. In: Proceedings of the dynamic response and soil properties, New Peaks in Geotechnics.
Zhou, H., Chen, X.F. (2006). A new approach to simulate scattering of SH-waves by an irregular topography. Geophys J Int. 164, 449-459.
Zhang, Y., Zhou, C., Liu, Y. (2011). Dynamic stresses concentrations of SH-wave by circular tunnel with lining. Adv Mater Res, 323, 18-22