بررسی اثر پوشش‌های حفاظتی با چگالی کم بر پاسخ مخازن مدفون تحت اعمال بار ناشی از انفجار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار‌؛ جهاد دانشگاهی واحد استان بوشهر

2 دانشجوی کارشناسی ارشد‌؛ گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی‌، واحد تهران شرق‌

3 استادیار؛ گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی‌، واحد تهران شرق‌

چکیده

در این پژوهش از دو نوع خاک و سه نوع ژئوفوم با پنج مقدار تی ان تی مختلف برای شبیه‌سازی استفاده شده است. نرم‌افزار مورد استفاده جهت تحلیل Ls-Dyna می‌باشد. استفاده از خاک‌های با چگالی پایین‌تر نسبت به سایر خاک‌ها می‌تواند از فشار وارده به مخزن بکاهد اما در خاک‌های با چگالی بیشتر فشار وارده به مخزن افزایش می‌یابد. از مهم‌ترین نتایج این پژوهش می‌توان به کاهش 60 درصدی فشار وارده به مخزن با استفاده از خاک‌های با چگالی پایین اشاره نمود. همچنین با افزایش فاصله تی ان تی و کاهش مقدار تی ان تی از مخزن به ترتیب با کاهش 52 و 25 درصدی فشار همراه بوده است.

کلیدواژه‌ها


Aytekin, M., Banu Ikizler, S. and Nas, E. (2008). Laboratory Study of Expanded polystyrene (EPS) geofoam used with expansive soils. Geotextiles and Geomembrance, Vol 26,189-195.
Chew, J. H., & Leong, E. C. (2009). Performance of Protective Barrier for Underground Structures,1-4.
Elsayed, M., Asce, S. M., El-dakhakhni, W., Asce, M., Tait, M., & Asce, M. (2011). Response Evaluation of Reinforced Concrete Block Structural Walls Subjected to Blast Loading. https://doi.org/10.1061/(ASCE)ST.1943-541X.
Elragi, A., Negussey, D. and Kyanka, G. (2000). Sample Size Effects On The Behavior of EPS Geofoam. Proceedings of the United Engineering Foundation ASCE Geo Institute soft Ground Technology Conference-soft Ground Technology, GSP 112 301,280-291.
Fakher, A., Cheshomi, A., & Khamechiyan, M. (2007). The addition of geotechnical properties to a geological classification of coarse-grained alluvium in a pediment zone.
Frydenlund, T.E. and Aaboe, R. (1996). Expanded Polystyrene the Light Solution. Proceedings of International Symposium on EPS Construction Method, Tokyo, Japan, 31-46.
Hazarika, H. (2006). Stress- Strain Modeling of EPS Geofoam For Large-Strain Applications. Geotextiles and Geomembranes, 24. 79-90.
Hosseini Nassab, H., Movahedifar, S. M. (2019). Effect of Position and Dimensions of Tunnel Guard Slabs on the Reduction of Ground-Level Explosion Loads. Tunneling &Underground Space Engineering (TUSE)., 7, 51-62.
Huang, Y., Willford, M. R., Francisco, S., & Schwer, L. E. (2012). Validation of LS-DYNA ® MMALE with Blast Experiments, (3), 1–12.
Kiger, S. A., Balsara, J. P., & Chemical, A. (1983). W(Ib) D(n.) L(in.) 260 280, 94–96.
Kianoush, M. R., & Chen, J. Z. (2006). Effect of vertical acceleration on response of concrete rectangular liquid storage tanks. Engineering structures, 28(5), 704-715.
Lale Arefi, S., Bitarafan,M. (2013). Evaluation of Retrofitting Methods forUnderground Structures against Explosion Threats Using the Analytical Hierarchy Process (AHP) Method. Tunneling &Underground Space Engineering (TUSE)., 2, 65-74.
LSTC. (2017). LS-DYNA: Keyword User Manual Volume 1. Technology (Vol. I).
Livaoglu, R. (2008). Investigation of seismic behavior of fluid–rectangular tank–soil/foundation systems in frequency domain. Soil Dynamics and Earthquake Engineering, 28(2), 132-146.
Mittal, V., Chakraborty, T., & Matsagar, V. (2014). Dynamic analysis of liquid storage tank under blast using coupled Euler–Lagrange formulation. Thin-Walled Structures, 84, 91-111.
Nagy, N. M. (2015). Numerical evaluation of craters produced by explosions on the soil surface. Acta Physica Polonica A, 128(2), 260–266. https://doi.org/10.12693/APhysPolA.128.B-260
Negussey, D. (2007). Design Parameters For EPS Geofoam. Soils and Foundations, Japanese Geotechnical Society, 47, NO.1, 161-170.
Parviz, M., Aminnejad, B., & Fiouz, A. (2017). Numerical simulation of dynamic response of water in buried pipeline under explosion. KSCE Journal of Civil Engineering, 21(7), 2798–2806. https://doi.org/10.1007/s12205-017-0889-y
Pandey, A. K., Kumar, R., Paul, D. K., & Trikha, D. N. (2006). Non-linear response of reinforced concrete containment structure under blast loading. Nuclear Engineering and design, 236(9), 993-1002.
Shahnazari, H., Esmaeili, M., & Ranjbar, H. H. (2010). Simulating the Effects of Projectile Explosion on a Jointed Rock Mass Using 2D DEM : A Case Study of Ardebil-Mianeh Railway, 8(2), 125–133.
Soheyli, M. R., Akhaveissy, A. H., & Mirhosseini, S. M. (2016). Large-scale experimental and numerical study of blast acceleration created by close-in buried explosion on underground tunnel lining. Shock and Vibration, 2016. https://doi.org/10.1155/2016/891805
Schneider, P., & Alkhaddour, A. M. (2000). Survivability study on vertical cylindrical steel shell structures under blast load. WIT Transactions on The Built Environment, 48.
  Salunke.,sh& kulkarni.,s& kladlag.,v. (2017). blast analisis of liquad petroleam tank, International journal of academic research and development.2، 530-539.
Teich, M., & Gebbeken, N. (2013). Analysis of FSI effects of blast loaded flexible structures. Engineering Structures, 55, 73-79.
UFC 3-340-02. (2008). Structures to Resist the Effects of Accidental Explosions. Structures Congress 2011, (May 2005), 1867. https://doi.org/10.1061/41171(401)127
Wang, Z., Li, Y., & Wang, J. G. (2006). Numerical analysis of attenuation effect of EPS geofoam on stress-waves in civil defense engineering, 24, 265–273. https://doi.org/10.1016/j.geotexmem.2006.04.002
Yang, Y., Xie, X., & Wang, R. (2010). Numerical simulation of dynamic response of operating metro tunnel induced by ground explosion. Journal of Rock Mechanics and Geotechnical Engineering, 2(4), 373–384. https://doi.org/10.3724/SP.J.1235.2010.00373.
Zhang, B. Y., Li, H. H., & Wang, W. (2015). Numerical study of dynamic response and failure analysis of spherical storage tanks under external blast loading. Journal of Loss Prevention in the Process Industries, 34, 209-217.