بررسی اثر پوشش‌های حفاظتی با چگالی کم بر پاسخ مخازن مدفون تحت اعمال بار ناشی از انفجار

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار‌؛ جهاد دانشگاهی واحد استان بوشهر

2 دانشجوی کارشناسی ارشد‌؛ گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی‌، واحد تهران شرق‌

3 استادیار؛ گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی‌، واحد تهران شرق‌

10.22044/tuse.2020.8654.1371

چکیده

در این پژوهش از دو نوع خاک و سه نوع ژئوفوم با پنج مقدار تی ان تی مختلف برای شبیه‌سازی استفاده شده است. نرم‌افزار مورد استفاده جهت تحلیل Ls-Dyna می‌باشد. استفاده از خاک‌های با چگالی پایین‌تر نسبت به سایر خاک‌ها می‌تواند از فشار وارده به مخزن بکاهد اما در خاک‌های با چگالی بیشتر فشار وارده به مخزن افزایش می‌یابد. از مهم‌ترین نتایج این پژوهش می‌توان به کاهش 60 درصدی فشار وارده به مخزن با استفاده از خاک‌های با چگالی پایین اشاره نمود. همچنین با افزایش فاصله تی ان تی و کاهش مقدار تی ان تی از مخزن به ترتیب با کاهش 52 و 25 درصدی فشار همراه بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the effect of protective coatings of low density on the response of buried tanks under blast loading

نویسندگان [English]

  • M. Parviz 1
  • M.R. Hasani 2
  • A. Ranjbar Karkanaki 3
1 Associate Professor; Iranian Academic Center for Education, Culture and Research (ACECR), Bushehr Branch
2 M.Sc. Student of Civil Engineering; East Tehran Branch, Islamic Azad University, Tehran
3 Department of civil Engineering, structural, Engineering , East Tehran Branch, Islamic Azad University, Tehran
چکیده [English]

Summary
The design and construction of underground reservoirs is of great importance because of our country have rich resources of oil and gas. In order for structure to resist against the blast, geofoam, an effective form of geosynthetics, could be a suitable solution. In this study, two types of soils and three types of geofoam with five different amounts of TNT were simulated. By using Ls-Dyana softwares, this research tries to model a tank in soil using geofoam in order to analyze pressure reduction and damage to the tank.

Introduction
The current research is a parametric study of the behavior of Tanks buried in the soil under blast loading. The effects on the physical properties of Reinforcement Concrete, soil and TNT were investigated. The LBE method was used in LS-DYNA software and the effects were compared. The results show that higher density soil caused higher pressure transfer to the Tanks buried. Explosions in lower density soil resulted in less damage to the Tanks buried because the soil acted as a damper under the waves of explosion. Tanks buried in soil with a lower density can use Tanks buried with lower resistance because the soil will act as a damper and transmit less pressure to the Tanks buried.

Methodology and Approaches
The current research is a parametric study of the behavior of Tanks buried in the soil under blast loading. The effects on the physical properties of Reinforcement Concrete, soil and TNT were investigated. The LBE method was used in LS-DYNA software and the effects were compared.

Results and Conclusions
In this study, two types of soil and three types of geofoam with five different amounts of TNT were used for simulation. The software used for conducting the analysis is Ls-Dyna. The use of lower density soils can reduce the pressure on the tank, while in higher density soils the pressure on the tank increases. One of the most important findings of this study is reduction of pressure on the tank by 60% as a result of using low density soils. Furthermore, an increase in the TNT distance and a decrease in the TNT content were associated with a 52% and a 25% decrease in pressure on the tank, respectively.

کلیدواژه‌ها [English]

  • Blast
  • Buried tanks
  • Geofoam
  • Geosynthetics
  • Geotechnical
Aytekin, M., Banu Ikizler, S. and Nas, E. (2008). Laboratory Study of Expanded polystyrene (EPS) geofoam used with expansive soils. Geotextiles and Geomembrance, Vol 26,189-195.

Chew, J. H., & Leong, E. C. (2009). Performance of Protective Barrier for Underground Structures,1-4.

Elsayed, M., Asce, S. M., El-dakhakhni, W., Asce, M., Tait, M., & Asce, M. (2011). Response Evaluation of Reinforced Concrete Block Structural Walls Subjected to Blast Loading. https://doi.org/10.1061/(ASCE)ST.1943-541X.

Elragi, A., Negussey, D. and Kyanka, G. (2000). Sample Size Effects On The Behavior of EPS Geofoam. Proceedings of the United Engineering Foundation ASCE Geo Institute soft Ground Technology Conference-soft Ground Technology, GSP 112 301,280-291.

Fakher, A., Cheshomi, A., & Khamechiyan, M. (2007). The addition of geotechnical properties to a geological classification of coarse-grained alluvium in a pediment zone.

Frydenlund, T.E. and Aaboe, R. (1996). Expanded Polystyrene the Light Solution. Proceedings of International Symposium on EPS Construction Method, Tokyo, Japan, 31-46.

Hazarika, H. (2006). Stress- Strain Modeling of EPS Geofoam For Large-Strain Applications. Geotextiles and Geomembranes, 24. 79-90.

Hosseini Nassab, H., Movahedifar, S. M. (2019). Effect of Position and Dimensions of Tunnel Guard Slabs on the Reduction of Ground-Level Explosion Loads. Tunneling &Underground Space Engineering (TUSE)., 7, 51-62.

Huang, Y., Willford, M. R., Francisco, S., & Schwer, L. E. (2012). Validation of LS-DYNA ® MMALE with Blast Experiments, (3), 1–12.

Kiger, S. A., Balsara, J. P., & Chemical, A. (1983). W(Ib) D(n.) L(in.) 260 280, 94–96.

Kianoush, M. R., & Chen, J. Z. (2006). Effect of vertical acceleration on response of concrete rectangular liquid storage tanks. Engineering structures, 28(5), 704-715.

Lale Arefi, S., Bitarafan,M. (2013). Evaluation of Retrofitting Methods forUnderground Structures against Explosion Threats Using the Analytical Hierarchy Process (AHP) Method. Tunneling &Underground Space Engineering (TUSE)., 2, 65-74.

LSTC. (2017). LS-DYNA: Keyword User Manual Volume 1. Technology (Vol. I).

Livaoglu, R. (2008). Investigation of seismic behavior of fluid–rectangular tank–soil/foundation systems in frequency domain. Soil Dynamics and Earthquake Engineering, 28(2), 132-146.

Mittal, V., Chakraborty, T., & Matsagar, V. (2014). Dynamic analysis of liquid storage tank under blast using coupled Euler–Lagrange formulation. Thin-Walled Structures, 84, 91-111.

Nagy, N. M. (2015). Numerical evaluation of craters produced by explosions on the soil surface. Acta Physica Polonica A, 128(2), 260–266. https://doi.org/10.12693/APhysPolA.128.B-260

Negussey, D. (2007). Design Parameters For EPS Geofoam. Soils and Foundations, Japanese Geotechnical Society, 47, NO.1, 161-170.

Parviz, M., Aminnejad, B., & Fiouz, A. (2017). Numerical simulation of dynamic response of water in buried pipeline under explosion. KSCE Journal of Civil Engineering, 21(7), 2798–2806. https://doi.org/10.1007/s12205-017-0889-y

Pandey, A. K., Kumar, R., Paul, D. K., & Trikha, D. N. (2006). Non-linear response of reinforced concrete containment structure under blast loading. Nuclear Engineering and design, 236(9), 993-1002.

Shahnazari, H., Esmaeili, M., & Ranjbar, H. H. (2010). Simulating the Effects of Projectile Explosion on a Jointed Rock Mass Using 2D DEM : A Case Study of Ardebil-Mianeh Railway, 8(2), 125–133.

Soheyli, M. R., Akhaveissy, A. H., & Mirhosseini, S. M. (2016). Large-scale experimental and numerical study of blast acceleration created by close-in buried explosion on underground tunnel lining. Shock and Vibration, 2016. https://doi.org/10.1155/2016/891805

Schneider, P., & Alkhaddour, A. M. (2000). Survivability study on vertical cylindrical steel shell structures under blast load. WIT Transactions on The Built Environment, 48.

  Salunke.,sh& kulkarni.,s& kladlag.,v. (2017). blast analisis of liquad petroleam tank, International journal of academic research and development.2، 530-539.

Teich, M., & Gebbeken, N. (2013). Analysis of FSI effects of blast loaded flexible structures. Engineering Structures, 55, 73-79.

UFC 3-340-02. (2008). Structures to Resist the Effects of Accidental Explosions. Structures Congress 2011, (May 2005), 1867. https://doi.org/10.1061/41171(401)127

Wang, Z., Li, Y., & Wang, J. G. (2006). Numerical analysis of attenuation effect of EPS geofoam on stress-waves in civil defense engineering, 24, 265–273. https://doi.org/10.1016/j.geotexmem.2006.04.002

Yang, Y., Xie, X., & Wang, R. (2010). Numerical simulation of dynamic response of operating metro tunnel induced by ground explosion. Journal of Rock Mechanics and Geotechnical Engineering, 2(4), 373–384. https://doi.org/10.3724/SP.J.1235.2010.00373.

Zhang, B. Y., Li, H. H., & Wang, W. (2015). Numerical study of dynamic response and failure analysis of spherical storage tanks under external blast loading. Journal of Loss Prevention in the Process Industries, 34, 209-217.