برآورد قابلیت جریان سنگ ‌آهن و باطله در منطقه تخریب معدن زیرزمینی آنومالی 12 سه چاهون

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکتری استخراج معدن؛ دانشکده مهندسی معدن و متالورژی، دانشگاه یزد

2 کارشناس ارشد مکانیک سنگ؛ دانشکده مهندسی معدن و متالورژی، دانشگاه یزد

3 دانشیار؛ دانشکده مهندسی معدن و متالورژی، دانشگاه یزد

10.22044/tuse.2019.8575.1370

چکیده

جریان ثقلی در معادن زیرزمینی تخریبی به دلیل اثرگذاری آن بر اختلاط و بازیابی دارای اهمیت به سزایی است. از این‌رو ارزیابی و بررسی آن به روش‌های مختلف تا کنون به انجام رسیده است. در این پژوهش قابلیت جریان ثقلی ماده معدنی و باطله در آنومالی شماره 12 سه چاهون با استفاده از مدلسازی فیزیکی برآورد شده است. به این منظور ابتدا ابعاد طراحی مورد مطالعاتی انتخاب و بر اساس آن با مقیاس 1:10، مدل فیزیکی سه بعدی ساخته شده است. مدل فیزیکی با استفاده از ماده معدنی و باطله دانه بندی شده ایجاد شده است. انجام آزمایش روی مدل در ابتدا با مشخص کردن زاویه قرار ماده معدنی و باطله و عمق برداشت آغاز و با به دست آمدن عمق برداشت برابر با 11 سانتی متر، فرایند مدلسازی جریان انجام گرفت. نتایج مدلسازی نشان داد که میزان بازیابی برابر با 63 درصد است و عمده مواد خروجی در دسته خوب و قابل قبول قرار می‌گیرد. همچنین با استفاده از روش المان مجزا، مدلسازی عددی جریان انجام گرفت که با توجه به اعتبارسنجی انجام شده، می توان از آن مدل برای مدلسازی‌های دیگر بهره برد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Gravity Flowability of Ore and Waste in Caved Zone of Anomaly No. XII of Sechahoon Underground Mine

نویسندگان [English]

  • A.R. Jabinpour 1
  • Seyyed H. Saadat Mirghadim 2
  • A.R. Yarahmadi Bafghi 3
1 PhD Student in Mining Exploitation; Department of Mining and Metallurgy, Yazd University
2 M.Sc. Student in Rock Mechanics; Department of Mining and Metallurgy, Yazd University
3 Associate Professor; Department of Mining and Metallurgy, Yazd University
چکیده [English]

Summary
Gravity flow in caving underground mining is a key parameter that effects on dilution and ore recovery. In order to have a successful operation in caving mining, it is necessary to evaluate and estimate the gravity flowability of ore and waste. From past to now, several researchers focused on study of gravity flow by different methods like mathematical, physical and numerical methods. In this study, the gravity flowability of ore and waste in caved zone of Sechahoon Anomaly No. XII was estimated by physical modeling. Then by using DEM modeling, a model based on physical model was created to use for future studies.

Introduction
In recent studies, sublevel caving method was selected for Sechahoon Anomaly No. XII. In sublevel caving method, we encounter with key parameters like cavability, gravity flow, blastability and subsidence. Therefore, gravity flow study is an important parameter that should be estimated. Gravity flow is studied by several researchers from past to now. These studies carried out by different methods like mathematical, physical and numerical methods.

Methodology and Approaches
In this study, the physical method was selected for gravity flow modeling. Therefore, a model was designed by a 1:10 scaled, tunnel width, ring height, burden and tunnel height equal to 50, 150, 20 and 40 cm, respectively. The model was filled by iron ore and waste that have a size distribution between 0 to 25 mm.

Results and Conclusions
The physical modeling results shows that:
• Recovery of iron ore is equal to 63 percent.
• The angle of repose of iron ore and waste are 43 and 38 degree, respectively.
• The shape of gravity flow is similar to common model that presents the validity of model.
• Digging depth is equal to 11 cm.
• Based on Kvapil suggestion, 48 percent of ore was classified as class A and 20 percent as class B.
By using the results of physical modeling, a numerical model is created and validated with physical modeling results in order to avoid from physical modeling problems and use for future studies that are useful in gravity flow studies.

کلیدواژه‌ها [English]

  • Gravity Flowability
  • Physical Modeling
  • 3D Model
  • sublevel caving
  • Sechahoon Anomaly No. XII
Alfaro, M., & Saavedra, J. (2004). Predictive models for gravitational flow. Paper presented at the 4th International Conference and Exhibition on Mass Mining, Santiago, Chile: Instituto de Ingenieros de Chile.

Alford, C. G. (1978). Computer simulation models for the gravity flow of ore in sublevel caving.

Baiden, G. R., Bissiri, Y., & Saari, A. V. (2008). Real time sensing of rock flow in a block cave mine. Paper presented at the 5th International Conference and Exhibition on Mass Mining, Luleå, Sweden: Luleå University of Technology.

Baxter, G. W., & Behringer, R. P. (1990). Cellular automata models of granular flow. Physical Review A, 42 (2), 1017-1020. doi: 10.1103/PhysRevA.42.1017

Brunton, I. (2009). The impact of blasting on sublevel caving flow behaviour and recovery. Ph. D. Thesis, University of Queensland, Brisbane, Australia.

Brunton, I., Fraser, S., Hodgkinson, J., & Stewart, P. (2010). Parameters influencing full scale sublevel caving material recovery at the Ridgeway gold mine. International Journal of Rock Mechanics and Mining Sciences, 47 (4), 647-656.

Castro, R., Arancibia, L., Guzman, D., & Henriquez, J. P. (2018). Experiments and simulation of gravity flow in block caving through FlowSim. Paper presented at the Proceedings of the Fourth International Symposium on Block and Sublevel Caving, Vancouver. https://papers.acg.uwa.edu.au/p/1815_21_Castro/

Castro, R., Gonzalez, F., & Arancibia, E. (2009). Development of a gravity flow numerical model for the evaluation of drawpoint spacing for block/panel caving. Journal of the Southern African Institute of Mining and Metallurgy, 109 (7), 393-400.

Castro, R., Tamburrino, A., & Fernandez, F. (2010). Development of the kinematic model to rapidly simulate the flow of caved rock for block caving. Paper presented at the Proceedings of the Second International Symposium on Block and Sublevel Caving, Perth. https://papers.acg.uwa.edu.au/p/1002_40_Castro/

Castro, R., Trueman, R., & Halim, A. (2007). A study of isolated draw zones in block caving mines by means of a large 3D physical model. International Journal of Rock Mechanics and Mining Sciences, 44 (6), 860-870.

Castro, R., & Whiten, W. (2007). A new cellular automaton to model gravity flow in block caving based on physical modelling observations.

Castro, R. L., Gonzalez, F., & Arancibia, E. (2009). Development of a gravity flow numerical model for the evaluation of drawpoint spacing for block/panel caving. Journal of the Southern African Institute of Mining and Metallurgy, 109, 393-400.

Castro, R. L., Vargas, R., & de la Huerta, F. (2012). Determination of drawpoint spacing in panel caving: a case study at the El Teniente Mine. Journal of the Southern African Institute of Mining and Metallurgy, 112, 871-876.

Chen, G. (1997). Stochastic modeling of rock fragment flow under gravity. International Journal of Rock Mechanics and Mining Sciences, 34 (2), 323-331.

Chen, Q., Qin, S., & Chen, Q. (2019). Numerical Simulation of Ore Particle Flow Behaviour through a Single Drawpoint under the Influence of a Flexible Barrier. Geofluids, 2019, 11. doi: 10.1155/2019/6127174

Cullum, A. (1974). The Effects of Confined Blasting on Rock Fragmentation and Flow Characteristics in Sub Level Caving. University of Queensland.

Darling, P. (2011). SME mining engineering handbook (Vol. 1): SME.

DeGagne, D. (2005). The Influence of Blasting Fragmentation on Ore Recovery in Sublevel Cave Mines. Paper presented at the Alaska Rocks 2005, The 40th US Symposium on Rock Mechanics (USRMS).

Free, G. D. (1970). Mathematical and model studies of the flow of material in the sublevel caving mining method: University of Queensland.

Gibson, W. (2014). Stochastic Models for Gravity Flow: Numerical Considerations. Paper presented at the Caving 2014, Santiago, Chile.

Gustafsson, P. (1998). Waste rock content variations during gravity flow in sublevel caving: Analysis of full-scale experiments and numerical simulations. Luleå tekniska universitet.

Halim, A., Trueman, R., & Castro, R. (2008). Quantifying effect of concurrent draw on extraction zones in block caving mines using large scale 3D physical model. Mining Technology, 117 (3), 128-135. doi: 10.1179/037178409X405723

Hancock, W. R., Weatherley, D. K., & Chitombo, G. P. (2010). Large-scale simulations of gravity flow in block caving. Paper presented at the Proceedings of the Second International Symposium on Block and Sublevel Caving, Perth. https://papers.acg.uwa.edu.au/p/1002_38_Hancock/

Hartman, H. L., & Britton, S. G. (1992). SME mining engineering handbook (Vol. 2): Society for Mining, Metallurgy, and Exploration Denver.

Hartman, H. L., & Mutmansky, J. M. (2002). Introductory mining engineering: John Wiley & Sons.

Hustrulid, A. I. (1998). A computational methodology for modeling large scale sublevel caving with a three-dimensional discrete element method.

Hustrulid, W., & Kvapil, R. (2008). Sublevel caving–past and future. Paper presented at the Proceedings of the 5th International Conference and Exhibition on Mass Mining.

Itasca, P. D. (2008). Particle Flow Code in 3 Dimensions, User's Guide.

Jabinpour, A., Yarahmadi Bafghi, A., & Gholamnejad, J. (2018). Geostatistical modelling of rock mass cavability based on laubscher approach in Sechahoon Mine. Journal of Research-Papers Mineral Resources Engineering, 3 (2), 53-69. doi: 10.30479/jmre.2018.1447

Janelid, I. (1972). Study of the gravity flow process in sublevel caving. Paper presented at the Proceedings of the International Sublevel Caving Symposium, Stockholm, Sweden.

Jolley, D. (1968). Computer simulation of movement of ore and waste in an underground mining pillar. Canadian Mining and Metallurgical Bulletin, 61 (675), 854-&.

Just, G. (1981). The significance of material flow in mine design and production. Design and Operation of Caving and Sublevel Stoping Mines, 715-728.

Just, G., & Free, G. (1971). The gravity flow of material in the sublevel caving mining system. Paper presented at the Proceedings 1st Australia–New Zealand conference on geomechanics, Melbourne.

Kasmaee, S., & Torab, F. (2014). Risk reduction in Sechahun iron ore deposit by geological boundary modification using multiple indicator Kriging. Journal of Central South University, 21 (5), 2011-2017.

Khodayari, F., Pourrahimian, Y., & Ben-Awuah, E. (2018). Application of mathematical modelling for draw control under material flow uncertainty. Paper presented at the Proceedings of the Fourth International Symposium on Block and Sublevel Caving, Vancouver. https://papers.acg.uwa.edu.au/p/1815_64_Khodayari/

Kuchta, M. E. (2002). A revised form of the Bergmark-Roos equation for describing the gravity flow of broken rock. Mineral Resources Engineering, 11 (04), 349-360.

Kvapil, R. (1965a). Gravity flow of granular materials in hoppers and bins. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 2 (1), 25-41. doi: https://doi.org/10.1016/0148-9062 (65)90020-3

Kvapil, R. (1965b). Gravity flow of granular materials in Hoppers and bins in mines—II. Coarse material. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 2 (3), 277-292. doi: https://doi.org/10.1016/0148-9062 (65)90029-X

 

Kvapil, R. (2008). Gravity flow in sublevel and panel caving: a common sense approach: Luleå University of Technology.

Lapčević, V., & Torbica, S. (2017). Numerical Investigation of Caved Rock Mass Friction and Fragmentation Change Influence on Gravity Flow Formation in Sublevel Caving. Minerals, 7 (4), 56.

Madankav. (2008). Report of exporation of Sechahoon Anomaly XII iron ore deposit IMPASCO.

McCormick, R. (1968). How wide does a drawpoint draw. Engineering and mining journal, 169 (6), 106-116.

Minchinton, A., & Dare-Bryan, P. (2005). The application of computer modelling for blasting and flow in sublevel caving operations. Paper presented at the Proceedings of the 9th AusIMM Underground Operators’ Conference, Perth, Australia.

Mullins, W. (1972). Stochastic theory of particle flow under gravity. Journal of Applied Physics, 43 (2), 665-678.

Panczakiewicz, T. (1977). Optimization of the sublevel caving mining method investigated by physical models: University of Melbourne, Department of Mining.

Peters, D. C. (1984). Physical modelling of the draw behaviour of broken rock in caving. Colorado School of Mines Quarterly, 79 (1), 1-60.

Pierce, M., Cundall, P., Van Hout, G., & Lorig, L. (2002). PFC 3D modeling of caved rock under draw. Paper presented at the Proceedings of the 1st International PFC Symposium on Block and Sublevel Caving. Gelsenkirchen.

Power, G. R. (2004). Modelling granular flow in caving mines: large scale physical modelling and full scale experiments.

Rustan, A. (2000). Gravity flow of broken rock: What is known and unknown. Paper presented at the International Conference & Exhibition on Mass Mining: 29/10/2000-02/11/2000.

Saadat, H. (2014). Analysis of gravity flowability of caved material in sublevel caving method. (Master Thesis), Yazd University.

Sánchez, V., Castro, R. L., & Palma, S. (2019). Gravity flow characterization of fine granular material for Block Caving. International Journal of Rock Mechanics and Mining Sciences, 114, 24-32.

Selldén, H., & Pierce, M. (2004). PFC3D modelling of flow behaviour in sublevel caving. MassMin 2004—Proceedings, 22-25.

Sharrock, G., Beck, D., Booth, G., & Sandy, M. (2004). Simulating gravity flow in sub-level caving with cellular automata. Proceedings of MassMin, 189.

Stazhevskii, S. (1996). Features of flow of broken rock in extraction of ores with sublevel caving. Journal of mining science, 32 (5), 403-416.

Sun, H., Jin, A., Gao, Y., Zhou, Y., & Yang, Z. (2015). Flow characteristics of caved ore and rock under complex boundary conditions. J Cent South Univ (Sci Technol), 46 (10), 3782-3788.

Talu, S., van As, A., Henry, R., Hilton, J., & Whiteman, D. S. (2010). Installing Smart Markers to monitor Lift 2 North extension ore flow behaviour. Paper presented at the Proceedings of the Second International Symposium on Block and Sublevel Caving, Perth. https://papers.acg.uwa.edu.au/p/1002_43_Talu2/

Trueman, R., Castro, R., & Halim, A. (2008). Study of multiple draw-zone interaction in block caving mines by means of a large 3D physical model. International Journal of Rock Mechanics and Mining Sciences, 45 (7), 1044-1051.

Verdugo, R., & Ubilla, J. (2004). Geotechnical analysis of gravity flow during block caving. Proceedings of MassMin, 195.

Whiteman, D. S. (2010). The Smart Marker System — a new tool for measuring underground orebody flow in block and sublevel mines. Paper presented at the Proceedings of the Second International Symposium on Block and Sublevel Caving, Perth. https://papers.acg.uwa.edu.au/p/1002_42_Whiteman/

Wimmer, M. (2010). Gravity Flow of Broken Rock in Sublevel Caving (SLC): State-of-the-art: Swedish Blasting Research Centre (Swebrec).

Yarahmadi Bafghi, A., & Jabinpour, A. (2018). Investigation of cavability of rock mass and method selection in Sechahoon Anomaly No. XII: Iran Central Iron Ore Co.

Yenge, L. I. (1980). Analysis of bulk flow of materials under gravity caving process – Part 1: Sublevel caving in relation to flow in bins and bunkers. Colorado School of Mines Quarterly, 75 (4), 1-45.

Yenge, L. I. (1981). Analysis of bulk flow of materials under gravity caving process – Part 2: Theoretical and physical modelling of gravity flow of broken rock. Colorado School of Mines Quarterly, 76 (3), 1-67.