اثر تونلسازی بر پاسخ تنش-تغییرشکل شمعهای مایل موجود

نوع مقاله: یادداشت فنی

نویسندگان

1 ,دپارتمان ژئوتکنیک, دانشکده فنی و مهندسی, دانشگاه بین المللی امام خمینی, قزوین, ایران

2 استادیار دانشگاه ازاد واحد زنجان

3 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین

10.22044/tuse.2019.8174.1360

چکیده

شمعهای مایل تا 45 درجه انحراف در برخی پروژه های عظیم مانند پلها، سکوهای نفتی، سیلوها، نیروگاه ها، پارکینگهای طبقاتی و حتی برخی ساختمانهای متحدث بر خاکهای ضعیف استفاده می شوند. با این حال اثرات تونلسازی بر مقاومت نوک شمع، کمانش و نشست سطح زمین متفاوت است. این تحقیق قصد دارد رفتار تنش-تغییرمکان سطح زمین را طی حفاری تونل در مجاورت شمعهای مایل مطالعه کند. روش المان محدود بمنظور بررسی اثر موقعیت و درجه انحراف شمعها بر جابجاییهای القایی در سطح زمین استفاده شده است. پس از صحت سنجی و ارزیابی راندمان نرم افزار المان محدود، توسعه مدل با مقایسه درجه انحراف شمعها (10، 20 و 30 درجه) و سه طول مختلف آنها (15، 21 و 27 متر) انجام شده است. نتایج نشان داد در تمام طولها و درجات انحراف شمعها، بیشینه نشست المان شمع بیشتر از بیشینه نشست سطح زمین و این بیشتر از بیشینه نشست نوک شمع است.

کلیدواژه‌ها


عنوان مقاله [English]

Impact of Tunneling on Stress-Displacement Response of Existing Batter Piles

نویسندگان [English]

  • E. Taherabadi 1
  • V. Hosseinitoudeshki 2
  • A.R. Ardakani 3
1 - Graduate Student; Geotechnical Engineering Division, Department of Civil Engineering, Faculty of Technical and Engineering, Imam Khomeini International University
2 Assistant Professor; Department of Civil Engineering, Faculty of Technical and Engineering, Islamic Azad University of Zanjan
3 Assistant Professor; Geotechnical Engineering Division, Department of Civil Engineering, Faculty of Technical and Engineering, Imam Khomeini International University
چکیده [English]

Batter piles up to 45° inclination are used in some giant projects such as bridges, oil platforms, store pits, power plants, vertical car parks, and even some constructed buildings on poor soils. However, the effects of tunneling on the pile tip strength, buckling of piles and surface settlement are various. This research intends to study the stress-displacement behavior of surface ground during tunneling in vicinity of batter piles. Finite Element Method (FEM) has been used to investigate the effect of position and inclination of the piles on the induced surface displacement. After validation and estimation the efficiency of the FE code, model development has been done by comparing the inclination in three degrees (10°, 20° and 30°) and three different lengths of the piles (15m, 21m and 27m). The results showed that in all the lengths and inclinations of piles, the maximum settlement of pile element is higher than the maximum surface settlement and it is higher than the maximum settlement of pile head

کلیدواژه‌ها [English]

  • Tunneling
  • Batter pile
  • 3D FEM
  • Settlement
  • Forces
Bezuijen, A., & Van der Schrier, J. S. (1994). The influence of a bored tunnel on pile foundations. In: Proceedings on Centrifuge (pp. 681–686). Singapore.

Boonyarak, T., & Ng, C. (2012). Tunneling effects on pile group response in Bangkok. GeoCongress (pp. 3119-3128).

Chen, L. T., Poulos, H. G., & Lohanathan, N. (1999). Pile response caused by tunneling. Journal of Geotechnical and Geoenvironmental Engineering (pp. 207–215).

Cheng, C. Y., Dasari, G. R., Chow, Y. K., & Leung, C. F. (2007). Finite element analysis of tunnel–soil–pile interaction using displacement controlled model. Tunnelingand Underground Space Technology (pp. 450–466).

Coutts, D. R, & Wang, J. (2000). Monitoring of reinforced concrete piles under horizontal and vertical loads due to tunneling. In:Tunnels and UndergroundStructures (pp. 541–546). Singapore.

Forth, R. A., & Thorley, C. B. B. (1996). Hong Kong Island Line – predictions and performance. In: Proceedings of International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground (pp. 677–682). London, Balkema.

Heama, N., Jongpradist, P., Lueprasert, P., & Suwansawat, S. (2017). Investigation on tunnel responses due to adjacent loaded pile by 3D finite element analyses. International Journal of GEOMATE (pp. 63-70).

Hergarden, H. J. A. M., Van der Poel, J. T., & Van der Schrier, J. S. (1996). Ground movement due to tunneling: Influence on pile foundations. In: Proceedings of International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground (pp. 519–524). London, Balkema.

Jacobsz, S. W., Standing, J. R., Mair, R. J., Hagiwara, T., & Sugiyama, T. (2004). Centrifuge modeling of tunneling near driven piles. Soils and Foundations (pp. 49–56).

Jacobsz, S. W., Standing, J. R., Mair, R. J., Soga, K., Hagiwara, T., & Sugiyama, T. (2001). Tunneling effect on driven piles. In: Proceedings of the International Conference on Response of buildings to excavation-induced ground movements. (pp. 1–15). Imperial College, CIRIA, London.

Jongpradist, P., Kaewsri, T., Sawatparnich, A., Suwansawat, S., Youwai, S., Kongkitkul, W., & Sunitsakul, J. (2013). Development of tunneling influence zones for adjacent pile foundations by numerical analyses. Tunneling and Underground Space Technology (pp. 96–109).

Kaalberg, F. J., Lengkeek, H. J., & Teunissen, E. A. H. (1999). Evaluatie van de meetresulaten van het proefpalenprojek ter plaatse van de tweede Heinenoordtunnel (in Dutch). Adviedbureau Noord/Zuidlijn Report No. R981382, Amsterdam.

Kitiyodom, P., Matsumoto, T., & Kawaguchi, K. (2005). A simplified analysis method for piled raft foundations subjected to ground movements induced by tunneling. International Journal for Numerical and Analytical Methods in Geomechanics (pp. 1485–1507).

Lee, C. J. (2012a). Three-dimensional numerical analyses of the response of a single pile and pile groups to tunneling in weak weathered rock. Tunneling and Underground Space Technology (pp. 132-142).

Lee, C. j. (2012b). Numerical analysis of the interface shear transfer mechanism of a single pile to tunneling in weathered residual soil. Computers and Geotechnics (pp. 193-203).

Lee, C. J., & Chiang, K. H. (2007). Response of single piles to tunneling-induced soil movements in sand ground. Canadian Geotechnical Journal (pp. 1224–1241).

Lee, C. J., & Jacobz, S. W. (2006). The influence of tunneling on adjacent piled foundations. Tunneling and Underground Space Technology (Vol. 21 (3-4), 430).

Lee, G. T. K., & Ng, C. W. W. (2005). Effects of advancing open face tunneling on an existing loaded pile. Journal of Geotechnical and Geoenvironmental Engineering (pp. 193-201).

Lee, Y. J., & Basset, R. H. (2007). Influence zones for 2D pile-soil-tunneling interaction based on model test and numerical analysis. Tunneling and Underground Space Technology (pp. 325–342).

Loganathan, N., Poulos, H. G., & Steward, D. P. (2000). Centrifuge model testing of tunneling induced ground and pile deformations. Geotechnique (pp. 315– 332).

Loganathan, N., Poulos, H. G., & Xu, K. J. (2001). Ground and pile group response due to tunneling. Soils and Foundations (pp. 57–67).

Lueprasert, P., Jongpradist, P., & Suwansawat, S. (2017). Numerical investigation of tunnel deformation due to adjacent loaded pile and pile-soil-tunnel interaction. Tunnelling and Underground Space Technology (pp. 166–181).

Mair, R. J., Taylor, R. N., & Bracegirdle, A. (1993). Subsurface settlement profiles above tunnels in clays. Géotechnique (pp. 315–320).

Morton, J. D, & King, K. H. (1979). Effects of tunneling on the bearing capacity and settlement of piled foundations. In:Tunnelling.

Mroueh, M., & Shahrour, I. (1999). Three-dimensional analysis of the interaction between tunneling and pile foundations. In: Proceedings of the 7th International Conference on Numerical Models in Geomechanics – NUMOG VII (pp. 397–402). Graz, Balkema.

Mroueh, M., & Shahrour, I. (2002). Three-dimensional finite element analysis of the interaction between tunneling and pile foundations. International Journal for Numerical and Analytical Methods in Geomechanics (pp. 217–230).

Naqvi, M. W., & Farooqi, M. A. (2018). Effect of piled structures on the tunnel stability for different pile-tunnel configurations. In: ISGTI , Delhi, India.

Pinto, F., & Whittle, A. J. (2014). Ground Movements due to Shallow Tunnels in Soft Ground. J. Geotech. Geoenviron. Eng. (pp. 1-17).

Selemetas, D., Standing, J. R., & Mair, R. J. (2005). The response of full-scale piles to tunneling. In: Geotechnical Aspects of underground Construction in Soft Ground – The proceedings of the 5th International Conference of TC28 of the ISSMGE (pp. 763–769). Netherlands.

Vermeer, P. A., & Bonnier, P. G. (1991). Pile settlements due to tunneling. In: Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering (pp. 869–872). Florence, Balkema.

Xu, K. J. & Poulos, H. G. (2001). 3-D elastic analysis of vertical piles subjected to ‘‘passive’’ loadings. Computers and Geotechnics (pp. 349–375).

Yang, M., Sun, Q., Lee, W. C., & Ma, K. (2011). Three dimensional finite element analysis on effects of tunnel construction on nearby pile foundation. J. Cent. South Univ. Technol. (pp. 909-916).