تعیین سیستم حمل‌ونقل بهینه جهت حفاری تونل‌های مکانیزه مترو

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس شرکت مهندسین مشاور ساحل امید ایرانیان؛ دانش‌آموخته‌ی دکتری مهندسی معدن

2 کارشناس موسسه فاطر قرارگاه سازندگی خاتم‌الانبیاء؛ دانش‌آموخته‌ی کارشناسی ارشد راه و ترابری

3 دانشیار، دانشکده حمل‌ونقل، دانشگاه صنعتی اصفهان

10.22044/tuse.2020.5547.1308

چکیده

هدف از پژوهش حاضر، انتخاب سیستم بهینه حمل و نقل در پروژه های حفاری مکانیزه متروی شهری است. بدین منظور، سه گزینه مورد بررسی قرار گرفته اند: سیستم ریلی کامل، سیستم ترکیبی نوارنقاله-ریل و سیستم ترکیبی نوارنقاله-خودروهای چرخ لاستیکی. معیارهای مختلف موردبررسی جهت مقایسه گزینه های مذکور عبارتند از: معیارهای اقتصادی، ایمنی-زیست محیطی ، فنی و مدیریت عملیاتی. برای هریک از این معیارها، یک یا چند زیرمعیار در نظر گرفته شدند. به منظور بررسی زیرمعیارهای اقتصادی، هزینه ها و منافع هریک از گزینه ها مورد تحلیل قرار گرفتند. وزن دهی به سایر معیارها و زیرمعیارها، با استفاده از روش مصاحبه با تیم کارشناسان خبره انجام شد. نظرات کارشناسان با استفاده از تکنیک تصمیم‌گیری چندمعیاره موسوم به «روش شباهت به گزینه ایده آل» مبتنی بر منطق فازی تحلیل گردیدند. نتایج تحلیلی نشان می دهند که سیستم ترکیبی نوارنقاله-خودروهای چرخ لاستیکی، بالاترین امتیاز را نسبت به دو سیستم دیگر دارد. با استفاده از نتایج پژوهش حاضر، می توان هزینه های مختلف مالی و غیرمالی جهت حمل و نقل حفاری تونل های مترو را به حداقل رساند.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of Optimal Transportation System in Excavation of Metro Tunnels

نویسندگان [English]

  • M. Javadi 1
  • M. S. Abbasi 2
  • M. Tamannaei 3
1 Expert of Sahel Omid Iranian Consulting Engineering Company; PhD. Graduated, Department of Tunnel Engineering
2 Expert of Fater Engineering Institute; M.Sc. Graduated, Department of Tunnel Engineering
3 Associate Professor; Department of Transportation Engineering; Isfahan University of Technology; Isfahan
چکیده [English]

The aim of this study is to select the optimal transport system in urban metro mechanized excavation projects. For this purpose, three options have been examined: complete railway systems, hybrid conveyor - railway systems, and hybrid conveyor-rubber wheel vehicles (or Multi-Service vehicle MSV) systems. Different criteria investigated for comparing the options include: economic, safety & environmental, technical and operational management criteria. For each of these main-criteria, one or more sub-criteria are considered. In order to evaluate the economic sub-criteria, the costs and the benefits of each option are analyzed. The interviews with professional experts are used to prioritize criteria and sub-criteria. Expert opinions are analyzed using a multi-criteria technique called "procedure similar to the ideal option» based on fuzzy logic. Analytical results show that the hybrid conveyor-rubber wheel vehicles (MSV) system has highest rating compared to the other systems. Using the results of this study, we will be able to minimize the various transportation financial and non-financial costs for metro tunnel excavation.

کلیدواژه‌ها [English]

  • Transportation
  • Mechanized excavation
  • Tunnel
  • Multi-criteria decision
  • fuzzy logic
Taheri moghadar M. )2001(. Assesment of the Semi-continuous transportation system in marl mine of Kerman sement co. First Iranian open pit mining, Kerman.

Taheri moghadar M. )2004(. Econemical Decision between Truck transportation and mobile crusher in open pit mining. Iranian Sement samposium. Open pit mining, Kerman.

Taheri moghadar M. )2012(. Conveyer Belt (Structure, Design and calculations). Kerman University Publication.

Ataei M. )2010). Fuzzy Multi Criteria Decision making, First Edition. Shahrood University Publication.

Ataei M. (2010). Multi Criteria Decision making, First Edition. Shahrood University Publication.

Mirmohamadsadeghi S J. (2008).  Principles and foundations of analysis and design of railway lines. Iran University of Science and Technology Publication.

Ambrasaite I, Barfod MB, Salling KB. (2011). MCDA and Risk Analysis in Transport Infrastructure Appraisals: the Rail Baltica Case. Procedia Social and Behavioral Sciences 20. pp. 944–953

Amund B. (1998). Hard Rock Tunnel Boring. Design and Construction. NTNU Trondheim.

Awasthi A, Chauhan S, Omrani H, Panahi A. (2011). A Hybrid Approach based on Servqual and Fuzzy TOPSIS for Evaluating Transportation Service Quality. Computers & Industrial Engineering 61. PP 637-646.

Awasthi A, Satyaveer S, Chauhan b, Hichem Omrani. (2011). Application of Fuzzy TOPSIS in Evaluating Sustainable Transportation Systems. Expert Systems with Applications 38. pp. 12270–12280

Azadeh A, Osanloo M, Ataei M. (2010). A new approach to mining method selection based on modifying the Nicholas technique.  Journal of Applied Soft Computing, volume 10, PP.1040-1061

Bäppler K. (2016). New developments in TBM tunnelling for changing grounds. Tunnel. Underground. Space Technology.

Bitarafan MR, Ataei M. (2004).  Mining method selection by multiple criteria decision making tools.  The South African Institute of Mining and Metallurgy. PP. 493-498

Boshkov SH, Wright F. (1973). Basic parametric criteria in the selection.  Design and development of underground mining systems.  In: A.B. Cummins. I.A. Given (Eds), SME Mining Engineering Handbook. Volume 1. SME-AIME. New York. PP. 12.2-12.13

Celik E, Bilisik ON, Erdogan M, Gumus AT, Baracli H. (2013). An Integrated Novel Iinterval Type-2 Fuzzy MCDM Method to Improve Customer Satisfaction in Public Transportation for Istanbul. Transportation Research Part E 58. PP 28-51.

Forman E, Peniwati K. (1998). Aggregating Individual Judgments and Priorities with the Anaytic Hierarchy Process. European Journal of Operational Research 108. PP 165-169

Hwang CL, Yoon K. (1981). Multiplie Atributes Decision Making Methods and Applications. Springer. Berlin. 

Hinsley F. Subsurface ventilation and environmental Engineering.

Hustrulid W, Bullock Rl. (2001). Planning the Underground Mine on the Basis of Mining Method.  Society of Mining.  Metallurgy and Exploration Inc

Liang GS, Wang MJ. (1994). Personnel Selection Using Fuzzy MCDM Algorithm. European Journal of Operational Research. 78

Miller TL, Pakalnis R, Poulin R. (1995). UBC Mining method selection.  Mine planing and equipment selection Symposium (MPES). Singal ed. Balkma. Roterdam

Opricovice S, Tzeng GH. (2004). The Compromize Solution by MCDM Methods: A Compromize Analyze of VIKOR and TOPSIS. European Journal of Operational Research 156.

OSHA 19100. Standard of occupational noise exposure.

Orr SA. (1992). Hard-rock mining: method selection criteria.  SME Mining Engineering Handbook. Chapter 21. pp. 2090-2106.

Ritter S, Einstein HH, Galler R. (2012). Planning the handling of tunnel excavation material – A process of decision making under uncertaint.

WALKER SC. (1988). Advances in Mining Science and Technology.  Mine Winding and Transport. ELSEVIER

Wang TCh, Chang TH. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Systems with Applications. Volume 33. PP. 870–880

William M, Roberts. (1998). MATERIALS HANDLING SYSTEM. US. Patent.

Yang T, Hung CC. (2007). Multiple-Attribute Decision Making Methods for Plant Layout Design Problem. Robot Compute-Integr Manuf 23. PP 126-137.

Zare S, Bruland A, Rostami J. (2016). Evaluating D&B and TBM tunnelling using NTNU prediction models. Tunnelling and Underground Space Technology 59. 55–64