بهینه‌سازی توزیع هوا در شبکه تهویه با به‌کارگیری روش الگوریتم ژنتیک (مطالعه موردی: معدن زغال‌سنگ کلاریز شرقی)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار؛ دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین

2 دانش‌آموخته کارشناسی ارشد مهندسی معدن؛ دانشگاه بین‌المللی امام خمینی (ره)، قزوین

3 عضو هیات‌علمی؛ دانشکده فنی و مهندسی، دانشگاه سیستان و بلوچستان، زاهدان

چکیده

ددر این تحقیق بهینه‌سازی توزیع هوا در معدن زغالسنگ کلاریز شرقی با به‌کارگیری الگوریتم ژنتیک برای جستجوی مقادیر بهینه تخصیص بادبزن‌ها، افت فشار در‌های تنظیم‌کننده و شدت‌جریان‌ هر یک از شاخه‌های شبکه تهویه انجام گرفته است. با توجه به مدلسازی شبکه موجود معدن با نرم افزار ونت‌سیم، شدت جریان هوا در تعدادی از شاخه‌ها کمتر از حد مورد نیاز برآورد شده‌است. بهینه‌سازی توزیع هوا در دو حالت مجزا شامل شرایط فعلی شبکه و نیز رعایت حداقل شدت جریان هوا در کلیه شاخه‌ها انجام گرفته‌است. نوع جریان نیمه‌کنترل‌شده نوع دوم فرض شد و کدنویسی در نرم‌افزار متلب، بر مبنای کمینه‌سازی انرژی مصرفی، اعمال محدودیت‌های قوانین شدت‌جریان و افت فشار کرشهف، به صورت توابع جریمه انجام گرفته‌است. در حالت اول بدون اعمال حداقل شدت جریان، مصرف انرژی کاهش یافت. در حالت دوم مقدار مصرف انرژی به 13696 وات و شدت جریان به 32 مترمکعب در ثانیه به دلیل هوارسانی به بیش از 22 شاخه معدن افزایش یافته است. تامین هوا و جبران افت فشار شبکه بسته به شرایط، با ترکیب سری و موازی دو بادبزن VTS11 موجود معدن انجام می‌گیرد. بررسی تاثیر مقادیر پارامترهای الگوریتم ژنتیک بر دستیابی به پاسخ بهینه نشانگر افزایش احتمال دستیابی به جواب بهینه با افزایش تعداد جمعیت است. افزایش ضرایب پیوند و جهش موجب کاهش دقت محاسبات و افزایش زمان اجرا گردیده استد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of Air distribution in Mine ventilation networks based on Genetic Algorithm (case study: Kalariz Coal Mine)

نویسندگان [English]

  • R. Shakoor Shahabi 1
  • H. Larijani 2
  • E. Elahi Zeyni 3
  • M. H. Sadeghzadeh 2
1 Assistant Professor; Mining Engineering Department, Engineering Faculty, Imam Khomeini International University, Qazvin, Iran
2 MSc Graduated in Mining Engineering; Imam Khomeini International University, Qazvin, Iran
3 Department of Mining Engineering; University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

The optimal distribution of air in mining operations can be called the most important executive solution to reduce the operating and capital cost of the ventilation system that causes by choosing the correct location and characteristics of the fans for the actual and adequate distribution of air flow in The network. Due to the multiplicity of parameters affecting the performance of the active ventilation system and its various components, achieving the optimum network parameters is time-consuming. Applying Metaheuristic techniques can help solve problems quickly and find optimal values of ventilation network.
The ventilation network simulation was performed in the two-dimensional implementation of the eastern Kalariz coal mine, identifying 43 nodes, 61 branches and 22 network loops. Then values of the intersection matrix and the fundamental matrix of the loop were identified. After simulation of the current design with the Ventsim software, the air flow rate in some of branches was less than the required level to establish the required minimum air flow rate. Therefore, the optimization of air distribution in the Kalariz coal mine was conducted in two separate conditions including the current conditions of the mine and supplement of minimum air flow intensity in all branches of the network. For network modeling, the semi-controlled flow type II was determined. Then the coding of the objective function in Matlab R2014 software was based on the minimization of energy consumption with regarding to flow rate and the pressure loses of the Kirchhoff's laws. Also the effect of the parameters of the genetic algorithm (mutation rate and crossover rate) along with population size on optimal response was investigated.
The results of the implementation of the model indicate a decrease in energy consumption from 10054 to 10040 watts. In the second condition, the energy consumption increased to 13696 watts and the current intensity was 32 m3/second. This values due to the fact that there were more than 22 mining branches, which in the first case did not observe the minimum required air flow. The efficiency of the genetic algorithm was determined in the analysis of the optimal fan performance and the amount of pressure drop required for the regulator doors. Increasing the number of people to a certain degree increases the chances of achieving the optimal answer. As the coefficients of the crossover and mutation become larger, the accuracy of the calculation decreases and the time to reach the optimal response increases.

کلیدواژه‌ها [English]

  • Air distribution optimization
  • Ventilation network
  • Genetic Algorithm
  • Minimum air consumption energy
  • Kalariz coal mine
Acuña, E., Hall, S., & Lowndes, I. (2010). Free and Semi Controlled Splitting Network Optimisation using Gas to justify the use of Regulators. Paper presented at the International Conference on Mining Innovation (4th: Santiago, Chile, 2010).

Acuña E. I., & Lowndes, I. S. (2014). A Review of Primary Mine Ventilation System Optimization. Interfaces, 44(2), 163-175.  Retrieved from https://doi.org/10.1287/inte.2014.0736

Berhe, H. W. (2012). Penalty Function Methods using Matrix Laboratory (MATLAB). African Journal of Mathematics and Computer Science Research, 5(13), 209-246. Retrieved from  https://doi.org/10.5897/AJMCSR12.027

Bodenhofer, U. (2003). Genetic Algorithms: Theory and Applications: Lecture notes, Fuzzy Logic Laboratorium Linz-Hagenberg, Winter.

H.Bahoddiny, R. D. (2012). Optimization of the Performance of the Ventilation System of the Nakhlak Lead Mine using GeneticAlgorithm. The First Conference on Mining Technologies, Iran-Yazd.

Hall, C. J. (1981).Mine Ventilation Engineering. Socity of  Mining. Engineering. AIMM, New York.

Hardcastle, S., & Kocsis, C. (2002). The Ventilation Challenge–A Canadian Perspective on Maintaining a Good Working Environment in Deep Mines. In Proceedings of the ACG Deep Mining Symposium, November  4-9.

Hardcastle, S., & Kocsis, C. (2004). The Ventilation Challenge. CIM(Canadian Mining and Metallurgical) Bulletin, 97(1080), 51-57.       

Hartman, H. L., Mutmansky, J. M., Ramani, R. V., & Wang, Y. (2012). Mine Ventilation and Air Conditioning: John Wiley & Sons Publication.

Kozyrev, S., & Osintseva, A. (2012). Optimizing Arrangement of Air Distribution Controllers in Mine Ventilation System. Journal of Mining Science, 48(5), 896-903. Retrieved from https://doi.org/10.1134/S1062739148050140   

Li, J., Chen, K.-y., & Lin, B. q. (2007). Genetic Algorithm for the Optimization of Mine Ventilation Network. Journal of China University of Mining and Technology, 36(6), 789. 793.         

Lowndes, I., Fogarty, T., & Yang, Z. (2005). The Application of Genetic Algorithms to Optimise the Performance of a Mine Ventilation Network: The Influence of Coding Method and Population Size. Soft Computing, 9(7), 493-506. https://doi.org/10.1007/s00500-004-0364-9

Bashiri.M (2013). Application of Innovative and Meta Heuristic Algorithms in the Design of Industrial System, Shahed University Publication (in persian).

Madani, H., 2003. Mines Ventilation, Vol. 2, Tehran: Amirkabir University of Technology (Tehran
Polytechnic) Press, Iran (In Persian).

McPherson, M. J. (1993). Ventilation Network Analysis, Subsurface Ventilation and Environmental Engineering , Springer Science & Business Media.

Fatahi.P (2011). Meta-Algorithms. Hamedan: Bu-Ali Sina University(in persian).

Petrov, N & Popov, N. (2004). Ways of Improving Economy and Reliability of Mine Ventilation. Journal of Mining Science, 40(5), 531-536 . Retrieved from https://doi.org/10.1007/s10913-005-0040-1

Stender, J. (1993). Parallel Genetic Algorithms: Theory and Applications (Vol. 14): IOS press.

Sui, J., Yang L., Zhu, Z., Fang, H., & Hua. Z,. (2011). Mine Ventilation Optimization Analysis and Airflow Control based on Harmony Annealing Search. Journal of Computers, 6(6), 1270-1277.   Retrieved from https://doi.org/10.4304/jcp.6.6.1270-1277

Wei, G. (2011). Optimization of Mine Ventilation System based on Bionics Algorithm. Procedia Engineering, 26, 1614-1619 Retrieved from https://doi.org/10.1016/j.proeng.2011.11.2345

Wei, L. j., Wang, D. M., Wang, Q., & GE, P. (2007). Study on Some Key Issues of Constructing Visual Mine Ventilation Simulation System . Safety in Coal Mines, 7, 6-9.        

Yang, Z., Lowndes, I., & Denby, B. (1999). Genetic Algorithm Optimization of a Large UK Coal Mine Ventilation Network: U.S. Mine Ventilation Symposium. Retrieved from  https://scholarsmine.mst.edu/usmvs/8usmvs/8usmvs-theme16/5

Zhao, D., Liu, J., Pan, J. t., & Ma, H. (2009). Hybrid Genetic Algorithm for the Optimization of Mine Ventilation Network. Journal of Coal Science and Engineering (China), 15(4), 389-393. Retrieved from https://doi.org/10.1007/s12404-009-0409-x           

Zhong, M., Xing, W., Weicheng, F., Peide, L., & Baozhi, C. (2003). Airflow Optimizing Control Research based on Genetic Algorithm During Mine Fire Period. Journal of Fire Sciences, 21(2), 131-153. Retrieved from https://doi.org/10.1177/0734904103021002003.