بررسی پاسخ‌های ایجادشده در تونل‌های دوقلوی دایره‌ای تحت بارگذاری انفجار

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای تخصصی مهندسی عمران -مهندسی زلزله دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

2 استادیار؛ گروه مهندسی زلزله، دانشکده‌ فنی و مهندسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

چکیده

با توجه به رشد روزافزون استفاده از تونل‌های متروی شهری و از سویی اهمیت استراتژیک ایران در منطقه خاورمیانه که همواره در معرض حملات نظامی کشورهای سلطه‌گر و یا اقدامات تروریسیتی داخلی قرار دارد، لزوم بررسی و تحلیل این سازه‌ها تحت بار انفجار حائز اهمیت می‌باشد. در این پژوهش با استفاده از نرم افزار المان محدودABAQUS6-11-1، خاک و تونل به صورت سه‌بعدی تحت بار انفجار داخل زمین قرار گرفته‌اند. بار انفجار با استفاده از روابط تجربی فشار ناشی از انفجار بر سازه زیرزمینی تخمین زده شده است. همچنین رفتار خاک و پوشش تونل غیرخطی درنظرگرفته شده است. در این پژوهش بحرانی‌ترین سناریوی توزیع خسارت در پوشش تونل ناشی از انفجار TNT مورد بررسی قرارگرفته است. همچنین به بررسی اثر ارتفاع روباره خاک و مقدار ماده منفجره بر بیشینه تنش‌ها و تغییرشکل‌های ایجاد شده در پوشش تونل‌های دوقلو تحت4 بار انفجاری 15، 30، 45 و60 کیلوگرمTNT پرداخته شده است. در نهایت اثر بهسازی خاک‌های نرم بر بهبود پاسخ پوشش تونل‌ها تحت بار انفجار بررسی شده است. نتایج نشان می‌دهد با افزایش ضخامت 1 متری خاک نرم پیرامون تونل، مقدار بیشینه تنش 44% کاهش می‌یابد. همچنین با دقت در نتایج فهمیده می‌شود که در طراحی مقاوم در برابر تهدیدات تروریستی در تونل‌های زیرزمینی توجه به سختی زمین (مدول الاستیسیته خاک) به مراتب مهمتر از مقاومت (چسبندگی زهکشی نشده) زمین است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessing the damages created in the twin circle tunnels under explosive loading and their responses

نویسندگان [English]

  • Mohammad reza Momenzadeh 1
  • M.R. Mansouri 2
  • A. Aziminejad 2
1 M.Sc. in Earthquake Engineering; Department of Earthquake Engineering; Islamic Azad University-Science and Research Tehran Branch
چکیده [English]

Summary
Metropolitan underground tunnels is increasingly used these days. Besides, Iran has strategic importance in the Middle East meanwhile risking always military attacks of hegemonic countries and local terroristic activities. Concerning the mentioned points, it is crucial to investigate and analyze such structures under explosive loadings. This research focuses on the most critical scenario of damage distribution in the tunnel covering cause by TNT explosion. Moreover, the effects of soil overburden height as well as the amount of explosive material is studied on the maximum stresses and deformations created in the covering of twin tunnels under 4 explosive loadings of 15, 30, 45 and 60 Kg TNT. At the end, the effect of soft soil rehabilitation is assessed on the improvement of tunnels covering response under explosive loading.

Introduction
Chio et.al (2006) studied the response of underground structures subjected to the explosion through nonlinear analysis [5]. In 2006, Gui et. al investigated the effects of ground surface explosion on the tunnel of Taipei Shongsan airport. Two dimensional solution of the problem by Gui et. al has been in the line of its simplification [6]. Lui has focused on the effects of explosion in New York subway. The conducted numerical investigations have been mainly two dimensional. The researchers mostly believe that plane strain assumption in the modeling is dramatically conservative in the explosion issue.

Methodology and Approaches
In this research, soil and tunnel have been subjected to the inside ground explosive loading in tri- dimensional form using ABAQUS6-11-1 finite element software. The explosive loading has been estimated through empirical relations of compression applied to the underground structure due to the explosion. Besides, the soil has been simulated by Druker Prager and the tunnel covering by Concrete Damage plasticity behavior models. Here, the effects of different parameters are investigated on the responses of twin tunnels under explosive loadings.

Results and Conclusions
The brief results of this investigation are as follows:
1- Increasing in the overburden height will cause the reduction of stresses and deformations in the covering of tunnels;
2- The most critical scenario of damage distribution in the tunnel section is in the overburden height of 10m under 60Kg TNT of explosive loading; the highest width of created crack is 91mm. the highest the height of soil overburden is, the more the created damage is in the tunnels covering under internal explosion;
3- The strength and stiffness of the ground should be rehabilitated in the soft soil surrounding the tunnel. The maximum stress is reduced for 44% with increasing the thickness of tunnel surrounding soil for 1m;
4- The maximum stress created in the tunnels covering is reduced by increasing the stiffness of soil. This reduction in the stress response is stopped in the status of increasing the thickness from 3m to 4m.
5- The stresses created in the tunnels covering are reduced with increasing the soil stiffness. The maximum stress remains approximately in a constant range in different values of soil strength.

کلیدواژه‌ها [English]

  • Soil rehabilitation
  • tunnel covering damage
  • Dynamic Analysis
  • tunnel- soil interaction
  • terroristic threats
  • TNT explosive material
  • impact pulse
Abaqus 6.11.1. (2012). User’s Manual. Hibbitt, Karlson and Sorenson, Inc.

Choi, S., Wang, J., Munfakh, G., & Dwyre, E. (2006). 3D Nonlinear Blast Model Analysis for Underground Structures. Proceedings of Geocongress.

Chopra, A.K. (1995). DYNAMICS OF STRUCTURES .Theory And Applications To Earthquake Engineering( B. Stenquist, Ed). United States of America:Prentice-Hall.

Clough, RW.,&  Penzien J. (2000) . Dynamics of Structures. Second ed. New York, NY: McGraw-Hill Book Co.

Chille, F., Sala, A. & Casadei, F. (1998). Containment of Blast Phenomena in Underground Electrical Power Plants. Advances in Engineering Software,7-12.

Departments of the Army, the Navy, & the Air Forces. (1990). Structures to Resist the Effects of Accidental Explosions. US Army Technical Manual TM 5-1300.

Davies, M., & Williams, A. (1992). Centrifuge Modelling the Protection of Buried Structures Subjected to Blast Loading. In Proceeding of the International Conference on Structures Under Shock and Impact, England:[sn].

Davies, M. (1994). Dynamic Soil Structure Interaction Resulting from Blast Loading. Leung, Lee and Tan (Eds.), Centrifuge,. 94: 319-324.

De, A. (2012). Numerical Simulation of Surface Explosions over Dry, Cohesionless Soil. Computers and Geotechnics. 43: p. 72-79.

Drucker D. C., & Prager W. (1952). Soil Mechanics and Plastic Analysis for Limit Design, Quarterly of Applied Mathematics, vol. 10, no. 2, pp. 157-165.

Fragaszy, R.,  Purcell, M., Olen, K., & Brownell, K.  (1994). Assessing the Reliability of Results in a Dynamic Centrifuge Test. In Comptes rendus De La Conference Centrifuge.

Grujicic, M., Pandurangan, B., Coutris, N., & Cheeseman, B. (2009). Derivation and Validation of Material Model for Clayey Sand for Use in Landmine Detonation Computational Analysis. Multidiscipline Modeling in Materials and Structures, 5(4) : p. 311-344.

Goodings, D.J., Fourney, W. & Dick, R.D. (1998). Geotechnical Centrifuge Modelling of Explosion Induced Craters-A Check for Scaling Effects., DTIC Document.

Gui, M. W. & Chien, M. C. (2004). Blast Resistant Analysis for a Tunnel Passing Beneath Taipei Shongsan Airport – A Parametric Study, Geotechnical and Geological Engineering, 24, 227–248.

Hoseini Ranjbar, H., & Esmaeili, M. (2010). Investigation of Structural Stability of Tunnel Casing Located in Jointed Rock Mass Against the Effects of Rockets Explosions-case study: 500 + 345 km Ardabil-Miyane Railway Tunnel. In Proc. of the 5th National Congress on Civil Engineering, (InPersian).

Huabei Liu, Ph.D. (2009). Dynamic Analysis of Subway Structures under Blast Loading.

Hosseini, S.M.A. (2012). Study of Mechanical Behavior of Salt Caverns under Cyclic Loading. Ph.D.

Kutter, B.L. Oleary, L., Thompson, P., & Lather, R. (1998) Gravity-Scaled Tests on Blast Induced Soil-Structure Interaction. Journal of Geotechnical engineering,. 114(4): p. 431-447

Liu, H. (2009). Dynamic Analysis of Subway Structures under Blast Loading. Geotechnical and Geological Engineering 27:699-711.

Lu, Y. (2005). Underground Blast Induced Ground Shock and its Modelling Using Artificial Neural Network. Computers and Geotechnics 32:164-178.

Luccioni, B., Ambrosini, D. Nurick, G., & Snyman, L. (2009). Craters Produced by Underground Explosions. Computers & Structures, 87(21) : p. 1366-1373

Mirzeinali Yazdi, S. H., Baziar, M. H., Rabeti Moghaddam, M., & Hashemi, H. R. (2010). Determination of Maximum Free Field Explosion Pressure of Conventional Projectiles in Soil for Modeling of Blast Loading Effect on the Underground and Above Ground Structures using FLAC Software. In Proc. of the 1st Conf. on Passive Defence and Resistance Structures, Babol Noshirvani University of Technology, (In Persian.)

Nagy, N. M., Mohamed, M. & Boot, J.C. (2010). Nonlinear Numerical Modelling for the Effects of Surface Explosions on Buried Reinforced Concrete Structures, Journal of Geomechanics and Engineering,, 1-18.

Rohit, T. (2016). Dynamic Analysis of a Twin Tunnel in Soil Subjected to Internal Blast Loading, Indian Geotechnical.

Rosengren, L., Olofsson, S.O., & Svedbjork, G. (1999). Modeling of Ground-Shock Wave Propagation in Soil Using FLAC. FLAC and Numerical Modeling in Geomechanics, A.A Balkema Publishers, Rotterdam, Netherlands, 401-405.

Smith, PD., & Hetherington, JG. (1994). Blast and Ballistic Loading of Structures. Butterworth Heinemann Oxford.

Thesis, Shahrood University, Shahrood, (In Persian)Asheghabadi, M. S., & Matinmanesh, H. (2011). Finite Element Seismic Analysis of Cylindrical Tunnel in Sandy Soils eith Consideration of Soil- Tunnel Interaction. The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction (pp.3162-3169). Doi:10.1016/ j.proeng. 2011.07.399.

Unified Facilities Criterias (UFC). (1990). Design of Buildings to Resist Progressive Collapse, UFC 4-23-03.

Unified Facilities Criterias (UFC). (1991). Fundemental of Protective Design for Consional Weapons, UFC 3-340-1.

Unified Facilities Criterias (UFC). (2008). Structure to Resist the Effects of Accidental Explosions, UFC.

Wang, J. (2001). Simulation of Landmine Explosion Using LS-DYNA3D Software:Benchmark Work of Simulation of Explosion in Soil and Air., DTIC Document.

Yang, Z. (1997). Finite Element Simulation of Response of Buried Shelters to Blast Loadings, Finite  Elements in Analysis and Design, 24, 113-132.