بررسی اثر انفجار در تونل‌های دوقلو بر روی لاینینگ تونل دچار سانحه و تونل مجاور با اشکال مختلف

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مربی دانشگاه آزاد دهاقان

2 مربی دانشگاه امام حسین

3 هیئت علمی دانشگاه یزد

4 کارشناس ارشد، مکانیک خاک و پی، دانشگاه یزد

5 کارشناس ارشد، مکانیک سنگ، دانشگاه شهید باهنر کرمان

چکیده

یکی از خطرات قابل پیش­بینی که در سال­های اخیر توسط گروهک‌های تروریستی ایجاد شده است، ضربه زدن به سیستم حمل و نقل مانند انفجار در شبکه­‌های مترو و تونل­های شهری می­باشد. بنابراین ایمن‌­سازی آنها به لحاظ سازه­ای، باید در اولویت مهندسین طراح و مدیران شهری قرار گیرد. علاوه بر آن، در سال‎های اخیر استفاده از تونل­های دوقلو با توجه به پایداری بیشتر و سهولت اجرا مورد استقبال مهندسین طراح قرار گرفته است. در این پژوهش به بررسی رفتار تونل­‌های دوقلو، در مقابل موج انفجار با مقطع­‌های مختلف به صورت شبیه­‌سازی عددی توسط نرم‌­افزار تفاضل محدود FLAC  پرداخته شده است. در نهایت نتایج حاصل از این تحلیل­‌های عددی که شامل بررسی نیروی محوری، لنگر خمشی به­وجود آمده در کل سازه نگهدارنده تونل­‌ها می­‌باشد، با یکدیگر مقایسه­ شده است. نتایج نشان می­‌دهد که تونل­‌های با مقطع نعل اسبی عملکرد مناسب­‌تری نسبت به مقطع مستطیلی خواهند داشت.    

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of the Effects of Explosions in Twin Tunnels on Lining of Accident Tunnel and Adjacent Tunnel with Different Shapes

نویسندگان [English]

  • Vahid Babadi Akashe 1
  • Abolghasem Mozafari 2
  • Kazem Barkhordari 3
  • AliAkbar Habibi 4
  • saeed khosravi 5
4 Master of Science, geotechnic, Yazd University
5 master of science, rock mechanics, shahid bahonar university of kerman
چکیده [English]

Summary
Consequently, horse-shoe tunnels have better performance.
Recently, public places and underground transport facilities such as subways and urban transport tunnels and routes have been the targets of terrorists. In this regard, there have been reports about explosion in these tunnels. Twin tunnels are built because of their structural strength and ease of construction. In this study, the behavior of tunnels with different cross-sectional geometries was examined numerically using the FLAC software under the impact of explosive forces. Thus, the performance of twin tunnels with three different shapes under internal explosion was studied in this research work. The results suggest that the twin tunnels with horseshoe cross section compared to rectangular cross section have better performance.
 
Introduction
Sadegh azar et.al. (2009) studied the impact of surface explosions on tunnels in different conditions. Ghaemi (2011) explained the effect of emission of missile compressive waves and their impact in continuous and discontinuous environment. Liu (2012) presented the nonlinear response of tunnels buried under explosive loading. Lee (2006) studied the stability of a tunnel, which was adjacent to an exploded tunnel. Tian (2008) studied the dynamic response of multi-story buildings affected by explosion in one of the twin tunnels. The effect of cross-sectional shape of twin tunnels that have not been investigated in these studies, is examined in this paper.
 
Methodology and Approaches
The shapes of twin tunnels were adopted from the code 161 of Ministry of Road and Urban Development. In this study, four types of twin tunnels have been considered. The primary section of the twin tunnels is the combination of 2 circles with the radii of 12.5 and 5.8 m in each tunnel. The first suggested section for the twin tunnels has a rectanglar shape with 10 m width and 6 m height in each tunnel. The second section for the twin tunnels is in the form of a circle with the radius of 12.5 m and a line with the length of 10 m in each tunnel. The third section of the studied twin tunnels is a combination of 3 circles with the radii of 12.5, 6.4 and 2.9 m in each tunnel. The FLAC software was used for this study. In this study, Mohr-Coulomb failure criteria for soil was considered.  
 
Results and Conclusions
Bending moments and axial force in the crown of the damaged tunnel and adjacent tunnel were obtained for four different cross-sectional shapes. The results showed that the stress caused by the detonation was much lower than the compressive strength of concrete, while bending moments are high. Therefore, when an explosion occurs, rectangular tunnels have poorer performance compared to horseshoe tunnels. Among the tunnels with horseshoe section, the second section shows a good performance against explosion.

کلیدواژه‌ها [English]

  • tunnel sections
  • Dynamic Analysis
  • twin tunnels
  • Explosion
Choi, S., Wang, J., Munfakh, G & Dwyre, E. (2006). 3D Nonlinear Blast Model Analysis for Underground Structures. GeoCongress, ASCE.

Department Road and Urban. (2013). Design and Implementation of Reinforced Concrete Buildings.

Entezari Zarech H. (2012). Numerical Study of  Effect of Explosion on Subway Tunnels MSc.  Thesis, Yazd University.

Feldgun, V., Karinski, Y., Yankelevsky, D. (2013). The Effect of an Explosion in a Tunnel on a Neighboring Buried Structure. Tunnelling and Underground Space Technology 44, 42–55.

Gui, M.W., & Chien, M.C. (2004). Blast-resistant Analysis for a Tunnel Passing Beneath Taipei Shongsan airport – a Parametric Study. Geotechnical and Geological Engineering, Vol. 24: pp. 227-248.

Ghaemi, M. ( 2011). Study of Wave Attenuation in Rock MSc. Thesis, Islamic Azad University Bafgh.

Itasca consulting group Inc. (2016). FLAC user manual. Version 8.

Lu, Y., Wang, Zh., Chong, K. (2005). A Comparative Study of Buried Structure in Soil Subjected to Blast Load Using 2D and 3D Numerical Simulations. Soil Dynamics and Earthquake Engineering, Vol. 25, pp. 275-288.

Liu, H. (2009). Dynamic Analysis of Subway Structures Under Blast Loading”, Department of Civil Engineering, The City College of NewYork, USA.

Liu, H. (2012). Soil-Structure Interaction and Failure of Cast-Iron Subway Tunnels Subjected to Medium Internal Blast Loading. Journal of Performance of Constructed Facilities, , ASCE .Vol. 26, No. 5, 691-701.

Li, J., Li, H., Ma, G., Zhou, Y. (2013). Assessment of Underground Tunnel Stability to Adjacent Tunnel Explosion. Tunnelling and Underground Space Technology 35, 227–234.

Mostofi Nejad, D. (2005). Reinforced Concrete Structures.  Arkan Danesh, Tehran.

Nagy, N., Eltehawy, E., Elhanavy, H., Eldesouky, A. (2009). Numerical Modeling of Geometrical Analysis for Underground Structures. 13th International Conference on Aerospace Sciences and Aviation Technology, ASAT 13, Cairo, Egypt.

Sadegh azar M, atarnezad R, Khosravi A. (2009). Assessment of Response of Buried Reinforced Concrete Structure under Blast load by  Numerical Modelling. First Earthquake Geotechnical National Conference, Mazandaran.

Tian, L., & Li, Z. (2008). Dynamic Response Analysis of a Building Structure Subjected to Ground Shock from a Tunnel Explosion. International Journal of Impact Engineering 35, 1164 – 1178.

Unified facilities criteria (UFC). (2014). Structures to resist the effect of accidental explosions. U.S army corps of engineers.

Vahedi, j. (2007). An Overview of the Methods of Estimating the Explosive Charges and the Effects of Loading on the Properties of Materials. National  Civil Engineering Students Conference,  Semnan University.

Yang, Z., (1997). Finite Element Simulation of Response of Buried Shelters to Blast Loadings. Finite Elements in Analysis and Design, Vol.24, Issue 3, pp.113-132.