مدل‌سازی عددی سه بعدی پدیده بالازدگی کف تونل باربری در روش جبهه‌کاربلند مکانیزه معدن زغال‌سنگ طبس

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه یزد

2 دانشگاه یزد- دانشکده مهندسی معدن و متالورژی

3 دانشگاه یزد- دانشکده مهندسی معدن و متالورژی- گروه استخراج

چکیده

یکی از مشکلاتی که در تونل‌های بین پهنه‌ای در روش جبهه‌کار بلند مکانیزه به وقوع می‌پیوندد، مساله مچاله شوندگی تونل‌ها و به طور ویژه بالازدگی کف این تونل‌ها به دلیل توزیع تنش‌های القایی ناشی از استخراج پهنه‌ها است. سیستم نگهداری این تونل‌ها در اثر فشار تورمی که به سیستم نگهداری وارد می‌شود، دچار خسارت‌های شدیدی می‌شوند. معدن زغال‌سنگ پروده طبس که به روش مکانیزه در حال استخراج است، با مشکلات ناشی از پدیده بالازدگی در کف تونل‌های باربری دنباله لایه مواجه است، بگونه‌ای که در برخی نقاط، مقدار بالازدگی کف تونل بعد از استخراج زغال‌سنگ در منطقه مورد نظر و در اثر پیشروی جبهه‌کار به حدود 1.4 متر می‌ر‌سد. هدف از انجام این پژوهش، مدل‌سازی عددی سه بعدی پدیده بالاآمدگی کف تونل و طراحی مجدد سیستم نگهداری تونل باربری پهنه شرقی شماره 2 معدن پروده یک طبس (E2M.G) است. ابزار مورد استفاده مدل‌سازی عددی با نرم‌افزار FLAC3D است. بدین منظور مقدار بالازدگی کف و اثر پیشروی جبهه‌کار بر روی این پدیده با استفاده از نرم افزار مذکور بررسی شده است. نتایج حاصل از مدل‌سازی عددی نشان می‌دهد که مقدار بالازدگی در نقطه شاهد کف تونل بدون در نظر گرفتن اثر پیشروی جبهه‌کار 45 سانتیمتر و زمانی‌که جبهه‌کار در فاصله 5 متری نقطه شاهد است به 145 سانتیمتر می‌رسد. در نهایت با پیشنهاد سیستم نگهداری از نوع قاب فولادی 180 IPB همراه با حفر کف تونل به شکل قوسی با عمق 40 سانتیمتر و نصب 8 عدد پیچ‌سنگ در کف، مقدار آماس کف در 5 متری جبهه‌کار به کمتر از 20 سانتیمتر کاهش ‌یافته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

3D Numerical Modeling of Tunnel Floor Heave in Tabas Mechanized Coal Mine

چکیده [English]

Summary
The aim of this paper is to redesign the main gate support system to control the floor heave in Tabas coal mine. This tunnel is located in the No.2 eastern panel of Parvadeh.1 Tabas coal mine (E2M.G). To reach this main, the amount of floor heave and the influence of face advance on the floor heave magnitude have been evaluated by FLAC3D software. The results have shown that the floor heave magnitude at control points, without considering the working face effect, is 45 cm, and when the distance between the panel working face and the control points is 5 meters, the floor heave magnitude will reach 145 cm. Finally, steel set (type IPB180) has been proposed as a support system. Furthermore, the excavation of main gate floor in curvilinear shape with 40 cm depth and the installation of 8 bolts in the floor have been suggested. In this condition, the amount of floor heave at a distance of 5 m in front of the panel working face decreases to lower than 20 cm.
 
Introduction
One of the problems in mechanized longwall mining method is the existence of inappropriate ground condition such as swelling and squeezing in tail gate and main gate tunnels. Tunnel excavation in these grounds with presence of high induced stresses, which are applied on support system, will encounter many difficulties.
 
Methodology and Approaches
Numerical modeling has frequently been used in various fields of engineering and its results are usually accepted by various organizations. In this paper, three dimensional (3D) modeling of main gate tunnel of No. 2 eastern panel in Tabas coal mine was carried out using FLAC3D software. For modeling and determination of the amount of floor heave, Mohr - Coulomb and strain softening behavioral models were used and amount of floor heave was achieved in two states of regardless the face advancement and with considering the face advancement effect.
 
Results and Conclusions
The results of numerical modeling with face advancement indicate that vertical and horizontal stresses in the tunnel floor, respectively, become 2 to 2.5 and 1.5 to 2 times greater than the stresses caused by face advancement, and thus, it is one of the effective factors on amount of tunnel floor heave. Moreover, the numerical modeling results have shown that the best support system to control the tunnel floor heave is as follows:
-   Using 4 steel bolts with 3 m length and 0.5 meter spacing in each row and 1 m row spacing in both sides of the tunnel roof
-   Using 4 rock bolts with 7 m length and 0.5 meter spacing in each row and 1 m row spacing in the center of roof
-   Using 4 fiber glass bolts with 4 m length and 0.5 meter spacing in each row and 1 m spacing in the right wall of the tunnel
-   Using 4 fiber glass bolts with 4 m length and 0.5 meter spacing in each row and 1 m spacing in the left wall of the tunnel
-   Using IBP180 steel set 

کلیدواژه‌ها [English]

  • Floor Heave
  • Numerical Modeling
  • Tabas Coal Mine
  • Support system
  • FLAC 3D Software
Anagnostou, G., & Kovári, K. (1995). Numerical analysis of tunnel floor heaves in swelling ground. In Proceedings of the international symposium on numerical models in geomechanics. Davos (Vol. 6, No. 8).

Anon. (2005). Basic Design of  Tabas Coal Mine Project, Report-Mining. Vol 1 of 5.

Barla, M. (1999). Tunnels in swelling ground: simulation of 3D stress paths by triaxial laboratory testing (Doctoral dissertation, Politecnico di Torino).

Barla, M. (2008). Numerical simulation of the swelling behaviour around tunnels based on special triaxial tests. Tunnelling and Underground Space Technology23(5), 508-521.

Chang, Q., Zhou, H., Xie, Z., & Shen, S. (2013). Anchoring mechanism and application of hydraulic expansion bolts used in soft rock roadway floor heave control. International Journal of Mining Science and Technology23(3), 323-328.

Chen, Y., Bai, J., Yan, S., Xu, Y., Wang, X., & Ma, S. (2012). Control mechanism and technique of floor heave with reinforcing solid coal side and floor corner in gob-side coal entry retaining. International Journal of Mining Science and Technology22(6), 841-845.

Gao, F., Stead, D., & Kang, H. (2015). Numerical simulation of squeezing failure in a coal mine roadway due to mining-induced stresses. Rock Mechanics and Rock Engineering48(4), 1635-1645.

Hesami, S., Bararpour, M., Shakeri, A., 2011. Mangment of teunnel in subsidence case;case study in sweelling ground.  6th civil engoneering conferences, semnan university. (in Persian)

Jin, S., & Lianguo, W. (2011). Numerical simulation of grooving method for floor heave control in soft rock roadway. Mining Science and Technology (China)21(1), 49-56.

Kovári, K. (2009). Design methods with yielding support in squeezing and swelling rocks. In World Tunnel Congress. Budapest, Hungary:[sn] (pp. 1-10)

Mortazavi, A., Hassani, F. P., & Shabani, M. (2009). A numerical investigation of rock pillar failure mechanism in underground openings. Computers and Geotechnics36(5), 691-697.

Najafi, M, 2009. Optimized design for Longwall Chain Pillars in the Tabas Coal Mines. M.Sc Thesis, Shahrood university of technology. (in Persian)

Najafi, M., Jalali, S. E., Bafghi, A. Y., & Sereshki, F. (2011). Prediction of the confidence interval for stability analysis of chain pillars in coal mines. Safety science49(5), 651-657.

Peng, S. S. (2006). Longwall mining. second edition, Morgantown, WV.621 pp.

Schumacher, F. P. (2012). Numerical investigation of pipe umbrella roof support systems in underground coal mining. The University of Utah.

Shahriar, K., Amoushahi, S., & Arabzadeh, M. (2009, January). Prediction of surface subsidence due to inclined very shallow coal seam mining using FDM. In Coal Operators' Conference (p. 93).

Shahrifzadeh, A.,  2011. Redesign of support system in Tabas coal mine tunnels. M.Sc Thesis, Bafgh Azad  university. (in Persian)

Sun, Y. (2004). Ground Control for Emplacement Drifts for LA (No. 800-K0C-SSE0-00100-000-00A). Yucca Mountain Project, Las Vegas, Nevada (US).

Tabas coal mine design office (TCMDO), 2013. Extraction report. Tabas coal mine.(in Persian)

Yasitli, N. E., & Unver, B. (2005). 3D numerical modeling of longwall mining with top-coal caving. International journal of rock mechanics and mining sciences, 42(2), 219-235.

Yasitli, N. E., Unver, B. (2005). 3-D Numerical Modelling Of Stresses around a Longwall Panel with Top Coal Caving. The Journal of The South African Institute of Mining and Metallurgy, VOLUME 105.

Zhu, S. Y., Jian, Z. Q., Hou, H. L., Xiao, W. G., & Pu, Y. A. O. (2008). Analytical model and application of stress distribution on mining coal floor. Journal of China University of Mining and Technology, 18(1), 13-17.