جانمایی بهینه انبارناریه زیرزمینی - مطالعه موردی انبارهای ذخیره‌سازی مواد ناریه پروژه سد بختیاری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 هیات علمی دانشگاه محیط زیست

2 کارشناس شرکت مهندسی سپاسد

چکیده

در ذخیره‌سازی زیرزمینی مواد پر انرژی مانند مواد ناریه، گاز و نفت، اگر فاصله جانبی و عمق مجموعه انبارهای زیرزمینی کم باشد، در اثر وقوع انفجار غیر منتظره در یکی از انبار­ها انفجار به سایر انبارهای مجاور منتقل شده و در نتیجه باعث وقوع حوادث فاجعه‌بار گسترده‌‌ای در سطح و زیر زمین می‌‌شود. در این مقاله از یک مدل الاستو-پلاستیک کالیبره شده در نرم‌‌افزار FLAC3D  برای شبیه‌سازی عددی انفجار انبار زیرزمینی استفاده شده است. میزان گسترش خرابی در مدل‌ها  توسط دو معیار حداکثر سرعت ذره­ای (PPV) آستانه­ خرابی و گسیختگی پلاستیک اندازه‌گیری شده است. نتایج شبیه‌‌سازی‌‌ها نشان می­دهد که زون خرابی بر اساس معیار PPV نسبت به گسیختگی پلاستیک دارای محدوده بزرگ‌تری است. پاسخ سیستم نگهداری بتنی در انبار مجاور انبار منفجر شده، حاکی از وقوع گسیختگی‌های کششی در اثر انعکاس امواج از دیواره­ها است. این می‌تواند باعث انتقال انفجار شود، حتی در شرایطی‌که زون خرابی حاصل از انفجار در توده سنگ به نزدیکی انبار مجاور هم نرسیده باشد. در این مقاله همچنین فاصله جانبی و عمق ایمن برای سه انبار زیرزمینی مواد ناریه پروژه سد بختیاری بر اساس نتایج مدل­سازی عددی برای ضعیف‌ترین و مستحکم­ترین توده سنگ ساختگاه به ترتیب برابر 40 و 45 متر 60 و 40 متر پیشنهاد شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimum layout of underground storage chambers for explosives - A case study: Underground storage of explosives in Bakhtiari dam

نویسنده [English]

  • yousuf Azimi 1
چکیده [English]

Summary
If layout of underground storage of energetic materials such as explosives, gases and petroleum is designed inappropriately, an unexpected explosion can result in transmission and spread of the explosion to other adjacent underground spaces and cause catastrophic events both in surface and underground. In this paper, a calibrated elasto-plastic numerical model in FLAC3D software is used to simulate the underground storage explosion. The peak particle velocity (PPV) damage criterion and the plastic deformation criterion have been adopted to study the extent of damage zone around the explosion. The results show that the extent of damage measured based on the PPV criterion is larger than the plastic deformation criterion. Investigating responses of concrete lining supports shows tensile ruptures in the concrete due to reflection of stress waves from inner walls, which can cause transmission of explosion without direct contact of damage zone to the nearby storage chambers. Finally, in this paper, the safe separation distance and embedment depth are proposed for three underground storage chambers of explosives in Bakhtiari dam project.
 
Introduction
The main purpose of this research is to use numerical modeling in order to predict safe separation distance and embedment depth for underground storage chambers of energetic materials to prevent transmission of explosion between chambers.
 
Methodology and Approaches
In this paper, major features of underground storage chambers and surrounding rock mass have been numerically simulated using three dimensional (3D) finite difference method. The damage extension around the exploded chamber is evaluated using two criteria of critical PPV and Mohr-Coulomb failure criterion. The results of numerical simulations have been compared with international standards.
 
Results and Conclusions
The results have proved that due to explosion stress waves reflection from inner walls of adjacent chambers that causes tensional cracks in concrete supports and adjacent rock mass, it is necessary to simulate the presence of adjacent chambers in the numerical models. Results of simulations in different rock masses show that the extension of the damage zone in strong rock masses is lower than that in weak rocks; however, the energy of stress waves propagating within strong rock masses, due to lower attenuating ability of the strong rock masses, is high and vice versa.

کلیدواژه‌ها [English]

  • Underground Storage
  • Blasting Modeling
  • Numerical prediction
  • PPV
  • Damage
  • Bakhtiari dam
Bakhtiary Dam and Hydroelectric Power Project, (2009).

DoD. (2004). Department of Defense ammunition and explosives safety standards. DoD 6055.9-STD.

Dragos, J., Wu, C., & Oehlers, D. (2013). Simplification of fully confined blasts for structural response analysis. Engineering Structures, 56, 312-326.

Fathi, E., & Mortazavi, A. (2010). Investigation of Prespiltting Blasting Using Analytical Equations and Numerical Modelling. First Conference of Blasting and Its Role in Reconstruction in Iran (pp. 153-162). Amirkabir University of Technology, Tehran: Investigation of Prespiltting Blasting Using Analytical Equations and Numerical Modelling.

Goel, R. K., Singh, B., & Zhao, J. (2012). Underground Infrastructures Planning, Design, and Construction. Elsevier.

Hao, H., & Wu, C. (2001). Scaled-distance relationships for chamber blast accidents in underground storage of explosives. Fragblast, 5(1-2), 57-90.

 Hendron, A. J. (1978). Engineering of rock blasting on civil projects: Structural and Geotechnical Mechanics (Englewood Cliffs, NJ: Prentice-Hall, 1977). International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(3), 242–277.

Itasca, C. (1997). FLAC3D user’s manual.

Jiang, N., & Zhou, C. (2012). Blasting Vibration Safety Criterion for a Tunnel Liner Structure. Tunnelling and Underground Space Technology, 32, 52-57.

Jiang, N., Zhou, C., Luo, X., & Lu, S. (2015). Damage characteristics of surrounding rock subjected to VCR mining blasting shock. Shock and Vibration, 2015, 1-8.

Kendorski, F., Jude, C., & Duncan, W. (1973). Effect of Blasting on Shortcrete Drift Linings. Mining Eng, 25(12), 38–41.

Langefors, U., & Kihlström, B. (1978). The Modern Technique of Rock Blasting. Wiley.

Lu, Y., Wang, Z., & Chong, K. (2005). A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations. Soil Dynamics and Earthquake Engineering, 25(4), 275-288.

Ma, G., Hao, H., & Wang, F. (2011). Simulations of explosion-induced damage to underground rock chambers. J Rock Mech Geotech Eng, 3(1), 19-29.

Ma, G., Hao, H., & Zhou, Y. (1998). Comput Geotech, 22(3-4), 283–303.

North Atlantic Treaty Organization. (1993). Manual on NATO Safety Principles for the Storage of Ammunition and Explosives. Bonn, Germany.

Odello, R. J. (1980). Origins and Implications of Underground Explosives Storage Regulationss. Technical. USA: Civil Engineering Laboratory, Naval Construction Battalion Center, Port Hueneme.

Persson, P. A. (1997). The Relationship Between Strain Energy, Rock Damage, Fragmentation, and Throw in Rock Blasting. Fragblast, 1(1), 99–110.

Singh, P. (2002). Blast Vibration Damage To Underground Coal Mines From Adjacent Open-Pit Blasting. International Journal of Rock Mechanics & Mining Sciences, 39(8), 959–973.

Tiwari, R., Chakraborty, T., & Matsagar, V. (2016). Dynamic Analysis of a Twin Tunnel in Soil Subjected to Internal Blast Loading. Indian Geotech J, 1-12.

UFC-3-340-02. (2008). Structures to resist the effect of accidental explosions. US Department of the Army, Navy and Air Force Technical Manual.

Wei, X., Zhao, Z., & Gu, J. (2009). Numerical Simulations of Rock Mass Damage Induced By Underground Explosion. International Journal of Rock Mechanics & Mining Sciences, 46(7), 41206–1213.

Wu, C., & Hao, H. (2006). Numerical Prediction of Rock Mass Damage Due To Accidental Explosions in an Underground Ammunition Storage Chamber. Shock Waves, 15(1), 43–54.

Wu, C., Lu, Y., & Hao, H. (2004). Numerical prediction of blast‐induced stress wave from large‐scale underground explosion. International journal for numerical and analytical methods in geomechanics, 28(1), 93-109.

Xia, X., Li, H. B., Li, J. C., Liu, B., & Yu, C. (2013). A case study on rock damage prediction and control method for underground tunnels subjected to adjacent excavation blasting. Tunnelling and Underground Space Technology, 35, 1-7.

Yang, R. L., Rocque, P., Katsabanis, P. D., & Bawden, W. F. (1994). Measurement and Analysis of Near-Field Blast Vibration and Damage. Geotechnical and Geological Engineering, 12(3), 169-182.