مدل‌سازی فیزیکی نشست در خاک ماسه‌ای ناشی از تونل‌سازی مکانیزه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران / دانشگاه صنعتی سهند تبریز

2 مدیر گروه ژئوتکنیک دانشکده مهندسی عمران/ دانشگاه صنعتی سهند تبریز

چکیده

پیش­بینی نشست­های ناشی از حفر تونل در زمین­های نرم از اهمیت بسزایی برخوردار است تا بتوان در صورت لزوم، اقدامات پیشگیرانه لازم را به منظور جلوگیری از آسیب دیدن سازه­های سطحی موجود انجام داد. با توجه به رفتار پیچیده خاک، به خصوص خاک­های دانه­ای، روش­های تجربی در پیش­بینی این  نشست­ها از جایگاه ویژه­ای برخوردار هستند. بدین منظور در این مقاله، ضمن معرفی مدل فیزیکی ساخته شده در دانشکده مهندسی عمران دانشگاه صنعتی سهند تبریز از نتایج به دست آمده از این مدل­سازی فیزیکی استفاده شده و جابجایی­های نمونه ماسه در دو تراکم نسبی متفاوت با استفاده از روش پردازش ­تصویر اندازه­گیری شده و منحنی­های نشست سطحی و زیر­سطحی با رابطه تجربی مقایسه شده­ است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Physical modeling of settlement in sandy soil due to mechanized tunneling

نویسندگان [English]

  • Amin Abdoli Fazel 1
  • Mehrdad Emami Tabrizi 2
  • Hasan Afshin 1
1 Department of Civil Engineering, Sahand University of Technology
2 Assistant Professor, Department of Civil Engineering, Sahand University of Technology
چکیده [English]

Prediction of tunneling induced settlement in soft grounds is of particular importance for estimating potential risks to pre-existing structures. Considering soil complex behavior, particularly granular materials, empirical methods are of special significance. In this regard, a study using physical modeling has been conducted in Soil and Rock Laboratory of Department of Civil Engineering at Sahand University of Technology. The observed surface and sub-surface settlements have been recorded and compared with the results of the most common empirical method used for this purpose.
 
Introduction
Tunnel excavation causes relaxation of in-situ stress, and we expect some deformation at tunnel depth that in soft grounds may reach to ground surface. Prediction of these settlements is of particular importance for estimating potential risks to pre-existing structures. In practice, the prediction of ground displacements is based mainly on empirical relationships. The most common empirical method is Peck’s method. In this method for prediction of settlement, it is generally supposed that ground loss at tunnel depth is thoroughly transferred to surface. This assumption may be correct in clay, however, for drained condition such as one in sands, soil volume does not remain constant and shear deformation causes dilatation or contraction of soil leading to ground loss at surface, which is not exactly the same as that at the tunnel depth. Therefore, settlement in sand needs more consideration. In this paper, we present a physical model to monitor soil displacement due to mechanized tunneling.  The obtained results from tests on sandy soil are then interpreted.
 
Methodology and Approaches
Ground loss at tunnel depth has been used to model tunneling effect on surrounding soil. Front wall of the physical model is transparent and soil layers movements have been measured by image processing technique. Sand sample movement during tests has been recorded by digital camera. Then, frames have been extracted and processed by means of particle image velocimetry (PIV) and observed surface and sub-surface settlement curves have been compared with the Peck curve. Since sand behavior varies in respect to its relative density, two different states have been considered.
 
Results and Conclusions
The obtained results show that surface and subsurface settlement curves in the dry sand sample follow Gaussian curve with acceptable accuracy. During excavation in drained sand, ground loss at depth may not be the same as that at the surface, and therefore, the use of ground loss at tunnel depth may lead to incorrect prediction of surface settlement. Moreover, the results indicate that the magnitudes of ground movements in looser sand increase and, the shape of the settlement trough becomes narrower.

کلیدواژه‌ها [English]

  • Settlement
  • Mechanized tunneling
  • Sand
  • Physical Modeling
  • Image Processing
[1]     Guglielmetti, V., Grasso, P., Mahtab, A. & Xu, Sh. (2008).  Mechanized Tunnelling in Urban Areas. London: Taylor & Francis Group. ISBN-13: 978-0-415-42010-5.

[2]     Chapman, D., Metje, N. & Stärk, A. (2010).  Introduction to Tunnel Construction. Taylor & Francis e-Library, ISBN-13: 978-0-203-89515-3.

[3]     Zhou, B., Marshall, A. & Yu, H. (2014). Effect of Relative Density on Settlements above Tunnels in Sands. Tunneling and Underground Construction, 96-105. DOI: 10.1061/9780784413449.010.

[4]     Wood, A. M. (2002). Tunnelling  Management by Design, Taylor & Francis e-Library. ISBN: 0-203-78590-8.

[5]     Hwang, R., Fan, C. & Yang, G. (1995). Consolidation Settlements due to Tunnelling, Proceedings of South East Asian Symposium on Tunnelling & Underground Space Develpoment, Bangkok,Thailand, 79-86.

[6]     Franzius, J. N. (2003). Behaviour of  Buildings due to Tunnel Induced Subsidence, Ph.D. thesis, Imperial College of Science, University of London.

[7]     Peck, R. B. (1969). Deep Excavations and Tunneling in Soft Ground. State of the art report. Mexico: Proc. 7th Int. Conf. on Soil Mechanics, 225-290.

[8]     O'Reilly, M. P. & New, B. M. (1982). Settlements above Tunnels in the United Kingdom Their magnitude and prediction. Brighton: Proceedings of the 3rd International Symposium on Tunnelling, 173-181.

[9]     Jacobsz, S. W., Standing, J. R., Mair, R. J., Hagiwara, T. & Sugiyama, T. (2004). Centrifuge Modelling of Tunnelling Near Driven Piles. Soils Found. 44, No. 1, 49-56.

[10] Celestino, T.B. & Ruiz, A.P.T. (1998). Shape of Settlement Troughs due to Tunneling through Different Types of Soft Ground. Felsbau 16(2), 118-121.

[11] Vorster, T.E.B., Klar, A., Soga, K. & Mair, R.J. (2005). Estimating the Effects of Tunneling on Existing Pipelines. Geotechnical & Geoenvironmental Engineering, 131, No. 11, 1399-1410. DOI: 10.1061/(ASCE)1090-0241.

[12] Loganathan,  N. & Poulos, H. (1998). Analytical Prediction for Tunneling-induced Ground Movements in Clays. Geotechnical and Geoenvironmental Engineering, 124(9),  846-856, DOI: 10.1061/(ASCE)1090-024.

[13] Beadle, M. (1998). Settlement induced by Tunnelling in Cohesive-Frictional Soils, M.Sc. thesis, University of Western Ontario London.

[14] Loganathan, N. (2011). An Innovative Method for Assessing Tunnelling-induced Risks to Adjacent Structures, New York, Parsons Brinckerhoff Inc.

[15] Cording, E. J., & Hansmire, W. H. (1975). Displacements around of Soft Ground Tunnels. Proceedings Fifth Panamerican Congress on Soil Mechanics and Foundation Engineering, (4), 571- 633.

[16] Atkinson, J. H. & Potts, D. M. (1977). Subsidence above Shallow Tunnels in Soft Ground, Proceedings, ASCE, 103(4), 307-375.

[17] Terzaghi, K. (1936). Stress Distribution in Dry and in Saturated Sand above a Yielding Trap-Door. Proceedings of the International Conference on Soil Mechanics, (1), 307–311, Cambridge, MA.

[18] Chevalier, B., Combe, G.  & Villard, P. (2007). Experimental and Numerical Studies of Load Transfers and Arching Effect in the Trap-Door Problem, Laboratoire Sols, Solides, Structures - Risques, Grenoble, France.

[19] Park, S.H., Adachi, T., Kimura, M. & Kishida, K. (1999). Trap Door Test Using Aluminum Blocks, Proceedings of the 29th Symposium of Rock Mechanics. J.S.C.E., 106–111.

[20] Adachi, T., Tamura, T., Kimura, K. & Nishimura, T. (1995). Axial Symmetric Trap Door Tests on Sand and Cohesion Soil. Proceedings of the 30th Japan National Conference on Geotechnical Engineering, 1973–1976 (in Japanese).

[21] Adachi, T., Kimura, M. & Kishida, K. (2003). Experimental Study on the Distribution of Earth Pressure and Surface Settlement through Three Dimensional Trapdoor Tests. Tunneling and Underground Space Technology 18 (2), 171–183.

[22] Caudron, M., Hor, B., Emeriault, F. & Al Heib, M. (2010). A Large 3D Physical Model: a tool to investigate the consequences of ground movements on the surface structures. EPJ Web of Conferences 6, 22001, 1-8.

[23] Champan, D.N., Ahn, S.K., Hunt, D.V.L. & Chan, H.C. (2006). The Use of Model Tests to Investigate the Ground Displacement Associated with Multiple Tunnel Construction in Soil. Tunnels & Tunneling 21 (3), 413.

[24] Lee, Y. & Yoo, C., (2006). Behavior of a bored tunnel adjacent to a line of load piles.  Tunneling and Underground Space Technology 21 (3), 370.

[25] Pokrovsky, G.I. & Fedorov, I.S. (1936). Studies of Soil Pressures and Soil Deformations by means of a Centrifuge. Proceedings of the First International Conference ISSMFE (Harvard), vol. I, 70.

[26] Bray, J.W. & Goodman, R.E. (1981). The Theory of Base Friction Models. International Journal of Rock Mechanics and Mining Science and Geomechnics Abstract 18, 453–468.

[27] Zelikson, A. (1969).  Geotechnical Models using the Hydraulic Gradient Similarity method, Geotechnique, 4, 495–508.

[28] Atkinson, J.H., Potts, D.M., Schofield, A.N. (1977). Centrifugal Model Tests on Shallow Tunnels in Sand. Tunnels and Tunnelling, vol: Jan/Feb, 59-64.

[29] Mair, R.J. (1979). Centrifugal Modelling of Tunnel Construction in Soft Clay. Ph.D. Thesis. Cambridge University Engineering Department, UK.

[30] Kim, S. (2004). Interaction Behaviours between Parallel Tunnels in Soft Ground, Tunneling and underground space technology, Underground space fore sustainable urban development, Proceedings of the 30th ITA-AITES world tunnel congress, Singapore, 22 - 27.

[31] Lee, C., Chiang, K. and Kuo, C. (2004). Ground Movement and Tunnel Stability when Tunneling in Sandy Ground, Chinese Institute of Engineers,27(7), 1021-1032, DOI:10.1080/02533839.2004.9670957.

[32] Marshall, A. M., Farrell, R., Klar, A. & Mair, R. (2012). Tunnels in sands: The Effect of Size, Depth and Volume Loss on Greenfield Displacements, Geotechnique, 62(5) , 385-399, DOI:10.1680/geot.10.p.047.

[33] Meguid, M.A., Saada, O., Nunes, M.A. & Mattar, J. (2008). Physical Modeling of Tunnels in Soft Ground: A review, Tunnelling and Underground Space Technology, 23, 185-198, DOI: 10.1016/j.tust.2007.02.003.

[34] White, D. J., Take, W. A. & Bolton, M.D. (2003). Soil Deformation Measurement using Particle Image velocimetry (PIV) and Photogrammetry, Geotechnique, 53(7) 619-631.

[35] Lee, K. M., Rowe, R. K. & Lo, K.Y. (1992). Subsidence owing to Tunnelling. I. Estimating the gap parameter, Canadian Geotechnical Journal, 29(6), 929-940.

[36] Mair, R. J. & Taylor, R. N. (1997). Bored Tunnelling in The Urban Environment. Proceedings of 14th Int. Conf. on Soil Mecaanics and Founation Engineering, 4, 2353-2385.