مدل‌سازی فیزیکی نشست در خاک ماسه‌ای ناشی از تونل‌سازی مکانیزه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران / دانشگاه صنعتی سهند تبریز

2 مدیر گروه ژئوتکنیک دانشکده مهندسی عمران/ دانشگاه صنعتی سهند تبریز

چکیده

پیش­بینی نشست­های ناشی از حفر تونل در زمین­های نرم از اهمیت بسزایی برخوردار است تا بتوان در صورت لزوم، اقدامات پیشگیرانه لازم را به منظور جلوگیری از آسیب دیدن سازه­های سطحی موجود انجام داد. با توجه به رفتار پیچیده خاک، به خصوص خاک­های دانه­ای، روش­های تجربی در پیش­بینی این  نشست­ها از جایگاه ویژه­ای برخوردار هستند. بدین منظور در این مقاله، ضمن معرفی مدل فیزیکی ساخته شده در دانشکده مهندسی عمران دانشگاه صنعتی سهند تبریز از نتایج به دست آمده از این مدل­سازی فیزیکی استفاده شده و جابجایی­های نمونه ماسه در دو تراکم نسبی متفاوت با استفاده از روش پردازش ­تصویر اندازه­گیری شده و منحنی­های نشست سطحی و زیر­سطحی با رابطه تجربی مقایسه شده­ است.

کلیدواژه‌ها

موضوعات


[1]     Guglielmetti, V., Grasso, P., Mahtab, A. & Xu, Sh. (2008).  Mechanized Tunnelling in Urban Areas. London: Taylor & Francis Group. ISBN-13: 978-0-415-42010-5.
[2]     Chapman, D., Metje, N. & Stärk, A. (2010).  Introduction to Tunnel Construction. Taylor & Francis e-Library, ISBN-13: 978-0-203-89515-3.
[3]     Zhou, B., Marshall, A. & Yu, H. (2014). Effect of Relative Density on Settlements above Tunnels in Sands. Tunneling and Underground Construction, 96-105. DOI: 10.1061/9780784413449.010.
[4]     Wood, A. M. (2002). Tunnelling  Management by Design, Taylor & Francis e-Library. ISBN: 0-203-78590-8.
[5]     Hwang, R., Fan, C. & Yang, G. (1995). Consolidation Settlements due to Tunnelling, Proceedings of South East Asian Symposium on Tunnelling & Underground Space Develpoment, Bangkok,Thailand, 79-86.
[6]     Franzius, J. N. (2003). Behaviour of  Buildings due to Tunnel Induced Subsidence, Ph.D. thesis, Imperial College of Science, University of London.
[7]     Peck, R. B. (1969). Deep Excavations and Tunneling in Soft Ground. State of the art report. Mexico: Proc. 7th Int. Conf. on Soil Mechanics, 225-290.
[8]     O'Reilly, M. P. & New, B. M. (1982). Settlements above Tunnels in the United Kingdom Their magnitude and prediction. Brighton: Proceedings of the 3rd International Symposium on Tunnelling, 173-181.
[9]     Jacobsz, S. W., Standing, J. R., Mair, R. J., Hagiwara, T. & Sugiyama, T. (2004). Centrifuge Modelling of Tunnelling Near Driven Piles. Soils Found. 44, No. 1, 49-56.
[10] Celestino, T.B. & Ruiz, A.P.T. (1998). Shape of Settlement Troughs due to Tunneling through Different Types of Soft Ground. Felsbau 16(2), 118-121.
[11] Vorster, T.E.B., Klar, A., Soga, K. & Mair, R.J. (2005). Estimating the Effects of Tunneling on Existing Pipelines. Geotechnical & Geoenvironmental Engineering, 131, No. 11, 1399-1410. DOI: 10.1061/(ASCE)1090-0241.
[12] Loganathan,  N. & Poulos, H. (1998). Analytical Prediction for Tunneling-induced Ground Movements in Clays. Geotechnical and Geoenvironmental Engineering, 124(9),  846-856, DOI: 10.1061/(ASCE)1090-024.
[13] Beadle, M. (1998). Settlement induced by Tunnelling in Cohesive-Frictional Soils, M.Sc. thesis, University of Western Ontario London.
[14] Loganathan, N. (2011). An Innovative Method for Assessing Tunnelling-induced Risks to Adjacent Structures, New York, Parsons Brinckerhoff Inc.
[15] Cording, E. J., & Hansmire, W. H. (1975). Displacements around of Soft Ground Tunnels. Proceedings Fifth Panamerican Congress on Soil Mechanics and Foundation Engineering, (4), 571- 633.
[16] Atkinson, J. H. & Potts, D. M. (1977). Subsidence above Shallow Tunnels in Soft Ground, Proceedings, ASCE, 103(4), 307-375.
[17] Terzaghi, K. (1936). Stress Distribution in Dry and in Saturated Sand above a Yielding Trap-Door. Proceedings of the International Conference on Soil Mechanics, (1), 307–311, Cambridge, MA.
[18] Chevalier, B., Combe, G.  & Villard, P. (2007). Experimental and Numerical Studies of Load Transfers and Arching Effect in the Trap-Door Problem, Laboratoire Sols, Solides, Structures - Risques, Grenoble, France.
[19] Park, S.H., Adachi, T., Kimura, M. & Kishida, K. (1999). Trap Door Test Using Aluminum Blocks, Proceedings of the 29th Symposium of Rock Mechanics. J.S.C.E., 106–111.
[20] Adachi, T., Tamura, T., Kimura, K. & Nishimura, T. (1995). Axial Symmetric Trap Door Tests on Sand and Cohesion Soil. Proceedings of the 30th Japan National Conference on Geotechnical Engineering, 1973–1976 (in Japanese).
[21] Adachi, T., Kimura, M. & Kishida, K. (2003). Experimental Study on the Distribution of Earth Pressure and Surface Settlement through Three Dimensional Trapdoor Tests. Tunneling and Underground Space Technology 18 (2), 171–183.
[22] Caudron, M., Hor, B., Emeriault, F. & Al Heib, M. (2010). A Large 3D Physical Model: a tool to investigate the consequences of ground movements on the surface structures. EPJ Web of Conferences 6, 22001, 1-8.
[23] Champan, D.N., Ahn, S.K., Hunt, D.V.L. & Chan, H.C. (2006). The Use of Model Tests to Investigate the Ground Displacement Associated with Multiple Tunnel Construction in Soil. Tunnels & Tunneling 21 (3), 413.
[24] Lee, Y. & Yoo, C., (2006). Behavior of a bored tunnel adjacent to a line of load piles.  Tunneling and Underground Space Technology 21 (3), 370.
[25] Pokrovsky, G.I. & Fedorov, I.S. (1936). Studies of Soil Pressures and Soil Deformations by means of a Centrifuge. Proceedings of the First International Conference ISSMFE (Harvard), vol. I, 70.
[26] Bray, J.W. & Goodman, R.E. (1981). The Theory of Base Friction Models. International Journal of Rock Mechanics and Mining Science and Geomechnics Abstract 18, 453–468.
[27] Zelikson, A. (1969).  Geotechnical Models using the Hydraulic Gradient Similarity method, Geotechnique, 4, 495–508.
[28] Atkinson, J.H., Potts, D.M., Schofield, A.N. (1977). Centrifugal Model Tests on Shallow Tunnels in Sand. Tunnels and Tunnelling, vol: Jan/Feb, 59-64.
[29] Mair, R.J. (1979). Centrifugal Modelling of Tunnel Construction in Soft Clay. Ph.D. Thesis. Cambridge University Engineering Department, UK.
[30] Kim, S. (2004). Interaction Behaviours between Parallel Tunnels in Soft Ground, Tunneling and underground space technology, Underground space fore sustainable urban development, Proceedings of the 30th ITA-AITES world tunnel congress, Singapore, 22 - 27.
[31] Lee, C., Chiang, K. and Kuo, C. (2004). Ground Movement and Tunnel Stability when Tunneling in Sandy Ground, Chinese Institute of Engineers,27(7), 1021-1032, DOI:10.1080/02533839.2004.9670957.
[32] Marshall, A. M., Farrell, R., Klar, A. & Mair, R. (2012). Tunnels in sands: The Effect of Size, Depth and Volume Loss on Greenfield Displacements, Geotechnique, 62(5) , 385-399, DOI:10.1680/geot.10.p.047.
[33] Meguid, M.A., Saada, O., Nunes, M.A. & Mattar, J. (2008). Physical Modeling of Tunnels in Soft Ground: A review, Tunnelling and Underground Space Technology, 23, 185-198, DOI: 10.1016/j.tust.2007.02.003.
[34] White, D. J., Take, W. A. & Bolton, M.D. (2003). Soil Deformation Measurement using Particle Image velocimetry (PIV) and Photogrammetry, Geotechnique, 53(7) 619-631.
[35] Lee, K. M., Rowe, R. K. & Lo, K.Y. (1992). Subsidence owing to Tunnelling. I. Estimating the gap parameter, Canadian Geotechnical Journal, 29(6), 929-940.
[36] Mair, R. J. & Taylor, R. N. (1997). Bored Tunnelling in The Urban Environment. Proceedings of 14th Int. Conf. on Soil Mecaanics and Founation Engineering, 4, 2353-2385.