تاثیر ذرات ریزدانه بر روی مقدار افت مخروط اسلامپ در خاک بعمل آوری شده با فوم برای حفاری با ماشین EPB

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای زمین‌شناسی مهندسی؛ دانشگاه فردوسی مشهد

2 استاد؛ گروه زمین‌شناسی مهندسی؛ دانشگاه فردوسی مشهد

3 استادیار؛ گروه زمین‌شناسی مهندسی؛ دانشگاه تهران

چکیده

یک خاک ایده آل برای ماشین EPB خاکی است که پس از حفاری و ورود به اتاقک فشار، تبدیل به یک ماده پلاستیک و خمیری با قابلیت اعمال فشار به سینه کار باشد. بدیهی است که یک خاک واقعی در طبیعت به ندرت دارای چنین ویژگی هایی می باشد. بنابراین همیشه سعی می شود با تزریق فوم به مصالح جمع شده در اتاقک فشار، خاکی با خصوصیات مذکور را بدست آورد. به افزودن فوم و پلیمر به خاک، عملیات بعمل آوری می گویند. در تونلسازی با ماشین EPB رفتار خاک حفاری شده از هنگامیکه در جلوی کاترهد ماشین با فوم مخلوط می شود تا زمانیکه از نقاله مارپیچ خارج می شود بستگی به ویژگی کارپذیری خاک بعمل آوری شده دارد که معمولا با آزمایش اسلامپ ارزیابی می گردد. عواملی که بر روی کارپذیری خاک موثر هستند شامل شاخص استحکام، درصد رطوبت، مقدار ذرات ریزدانه و نسبت تزریق فوم (FIR) می باشند. هدف اصلی این مقاله بررسی تاثیر پارامترهای فوق بر روی کارپذیری خاک بعمل آوری شده با فوم می باشد. در این مطالعه، به منظور دست یافتن به یک رابطه تجربی بین دو متغیر مستقل (شامل: درصد ریزدانه و پارامترهای کمی تزریق فوم) و متغیر وابسته (مقدار افت اسلامپ) ابتدا آزمون‌های آزمایشگاهی ترکیب فوم و خاک با محتوای رطوبت 15 درصد و شاخص استحکام 75/0 تا 1 انجام شد. سپس رابطه بین متغیرهای مختلف بوسیله مدل های رگرسیون چند متغیره مورد بررسی قرار گرفت و مشخص گردید که یک رابطه معنی دار بین آنها وجود دارد و کارپذیری مناسب در شرایطی بدست می آید که مقدار ذرات ریزدانه‌ی خاک بین 25 تا 60 درصد باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Influence of fine grains on decreasing slump value and workability during soil conditioning with foam for EPB-TBM tunneling

نویسندگان [English]

  • Sadegh Tarigh Azali 1
  • Mohammad Ghafoori 2
  • Gholam Reza Lashkaripour 2
  • Jafar Hassanpour 3
1 PhD Candidate of Engineering Geology; Ferdowsi University of Mashhad
2 Professor of Engineering Geology; Ferdowsi University of Mashhad
3 Assistant Professor of Engineering Geology; University of Tehran
چکیده [English]

To extend the application of earth pressure balance (EPB) machines to different geological conditions, the soil to be excavated must be treated with soil conditioning additives. The additives are injected at several points on the EPB machine; ahead of the cutting head, in the pressure chamber and along the screw conveyor. The behavior of the excavated soil, from mixing to extraction, depends mainly on the workability of the conditioned soil. Workability is the ease with which the excavated soil can be mixed with additives, compressed in a pressure chamber, flow freely from the face and be extracted by a screw conveyor. Workability is an indicator of the plasticity of the support media and the cohesiveness of the soil and is, thus, a criterion for applicability of EPB tunneling. The factors that affect the workability of the conditioned soil are water content, soil grade and size, additives and conditioning parameters. In this study, the effect of soil grade and size on the workability of conditioned soil for EPB-TBM tunneling is assessed using a laboratory slump test. The influence of fine grains on the workability of conditioned soil is also investigated by testing mixtures with different soil-foam contents. The test results show a quantitative relationship between fine-grains and workability for the application of EPB shields. The results clearly indicate that decreasing the fine grain content becomes stronger with an increase in the slump of the conditioned soil. It is concluded that a fine grain content of 25% to 60% produces the most normal behavior of the percentages tested in this study.
 
Introduction
EPB machines in closed mode make the use of the excavated soil to support the face. The support medium must fulfill a range of characteristics that include workability, water permeability, stickiness and abrasivity (Thewes et al., 2010). Not all types of soil are capable of being processed into support media having the required characteristics, which means that conditioning of the excavated soil may be necessary (Thewes and Budach, 2010). EPB-TBMs have increased in popularity since their first applications in Japan in the 1970s. This is in response to the mechanical improvements in EPB machines and the more effective use of additives (mainly foams and polymers) injected into the screw conveyor, bulk chamber and ahead of the cutting head to condition the soil (Peila et al., 2007). Conditioning is done by modifying the soil into a plastic, pulpy, impermeable paste that can correctly control tunnel face ground movement. It applies stabilizing pressure to the face, controls water flow, decreases wear on tools, the cutterhead and the screw conveyor and permits easy handling of the muck during transport (Peila et al., 2009). Excavated soil-foam mixtures must comply with requirements for use as a support medium. Testing can determine properties such as density, shear strength, water permeability, stability and workability (Thewes et al., 2010). The behavior of the conditioned soil relies mainly on its workability. Factors affecting workability include the size and grade of the soil, water content, use of admixtures and conditioning parameters. The size and grade of the soil controls ground behavior and workability of the support medium during EPB excavation (Thewes et al., 2010; Peila et al., 2008). Workability can be measured using a slump test. In this study, the influence of fine-grained soil on the workability of conditioned soil is examined using a laboratory slump test. Soil-foam-mixtures of different soil sizes are also analyzed using statistical methods at different foam injection ratios (FIR) under atmospheric conditions.
 
Methodology and Approaches
Slump testing has been performed according to ASTM C143 standard to measure the workability of the generated support medium (foam + excavated soil) on fresh concrete and self-compacting concrete. Previous research indicates that the slump cone test offers a good indication of the workability of the conditioned material. A laboratory foam generator has been used to generate foam for conditioning. A commercial foaming agent with a surfactant concentration of 2.5% has been applied in this investigation. Four frothy soil samples have been tested for workability and suitability of the conditioned materials for an EPB shield. The soils have artificially been prepared in the laboratory by mixing different percentages of fine grains, sand and gravel. Testing has been carried out with different FIRon different types of soils.
 
Results and Conclusions
The tests performed show that it is possible to determine the influence of different properties on the conditioned soils with foam that are essential for tunneling. The fine grain content has been used as an independent variable in the selected regression model to predict slump. It is concluded that the fine grain content and FIR are useful properties for prediction of slump in EPB tunneling.

کلیدواژه‌ها [English]

  • EPB
  • Tunnel
  • Soil conditioning
  • Fine grain
  • Workability
  • TBM
  • Slump
[1]     Thewes, M., Budach, C, Galli, M. (2010). Laboratory tests with various conditioned soils for tunnelling with earth pressure balance shield machines. Tunnel 6.

[2]     Tarigh Azali, S., Moammeri, H. (2012). EPB-TBM tunneling in abrasive ground, Esfahan Metro Line 1. In: Phienwej, N., Boonyatee, T. (Eds.), ITA-AITES World Tunnel Congress (WTC), Bangkok, Thailand.

[3]     Tarigh Azali, S., Ghafoori, M., Lashkaripour, G., Hassanpour, J. (2013). Engineering geological investigations of mechanized tunneling in soft ground: A case study, East–West lot of line 7, Tehran Metro, Iran. Engineering Geology 166, 170–185.

[4]     بخشنده امینه، ح.، زمزم، م.، موسوی، س.ا.، طریق ازلی، ص. (1392). انتخاب مناسب‌ترین مجموعه‌ی بهسازی خاک در حفاری مکانیزه‌ی تونل خط 7 متروی تهران. مهندسی تونل و فضاهای زیرزمینی، دوره 2، شماره 2، صفحه 145-154.

[5]     Peron, J. Y., Marcheselli, P. (1994). Construction of the ‘Passante Ferroviario’ link in Milan. Italy. Lots 3P, 5P, and 6P: Excavation by large EPBS with chemical foam injection: Tunnelling ’94: IMM, Chapman & Hall, London, United Kingdom.

[6]     Quebaud, S., Sibai, M., Henry, J.P. (1998). Use of chemical foam for improvements in drilling by earth pressure balanced shields in granular soils. Tunnelling and Underground Space Technology 13 (2), 173–180.

[7]     Jancsecz, S., Krause, R., Langmaack, L. (1999). Advantages of soil conditioning in shield tunnelling: Experiences of LRTS Izmir. In Alten, T. and Broch, E. (Editors), ITA-AITES World Tunnel Congress (WTC), Oslo, Norway.

[8]     Williamson, G. E., Traylor, M. T., Higuchi, M. (1999). Soil conditioning for EPB shield tunneling on the South Bay Ocean Outfall. In Hilton, D. and Samuelson, K. (Editors), Rapid Excavation and Tunneling Conference (RETC) 1999: SME, Littleton, CO, pp. 897–925

[9]     Leinala, T., Grabinsky, M., Delmar, R., Collins, J. R. (2000). Effects of foam soil conditioning on EPBM performance. In Ozdemir, I. A. (Editor), North American Tunneling (NAT) 2000: Balkema, Rotterdam, The Netherlands.

[10]  Peña, M. (2003). Soil conditioning for sands. Tunnels Tunnelling International, Vol. 7, pp. 40–42.

[11]  Hanamura, T., Kurose, J., Aono, Y., Okubo, H. (2007). Integral studies on mechanized functions of mudding agents and the properties of muddified soils in the EPB shield tunneling technology. In Bartak, J.; Hrdina, I.; Romancov, G.; and Zlamal, J. (Editors), ITA-AITES World Tunnel Congress (WTC), Prague, Czech Republic.

[12]  Vinai, R., Oggeri, C., Peila, D. (2008). Soil conditioning of sand for EPB applications: a laboratory research. Tunnelling and Underground Space Technology 23, 308–317.

[13]  Peila, D., Oggeri, C., Borio, L. (2009). Using the slump test to assess the behaviour of conditioned soil for EPB tunnelling. Environmental & Engineering Geoscience XV (3), 167–174.

[14]  Zumsteg, R., Puzrin, A.M. (2012). Stickiness and adhesion of conditioned clay pastes. Tunnelling and Underground Space Technology 31, 86–96.

[15]  Peila, D., Picchio, A., Chieregato, (2013). Earth pressure balance tunnelling in rock masses: Laboratory feasibility study of the conditioning process. Tunnelling and Underground Space Technology 35, 55–66

[16]  Thewes, M., Budach, C. (2010). Soil conditioning with foam during EPB tunnelling. Geomechanics and Tunnelling 3 (3), 256–267.

[17]  Psomas, (2001). Properties of foam/sand mixtures for tunneling applications, University of Oxford.

[18]  Peila, D., Oggeri, C. and Borio, L. (2008). Influence of granulometry, time and temperature on soil conditioning for EPBS applications. In: Underground Facilities for Better Environment and Safety. In: Kanjlia, V.K., Ramamurthy, T., Wahi, P.P., Gupta, A.C., (Editors), ITA-AITES World Tunnel Congress (WTC), Agra, India.

[19]  Borghi, F.X. (2006). Soil conditioning for pipe jacking and tunnelling. PhD Dissertation, Cambridge University, UK.

[20]  DAUB (2010). Empfehlungen zur Auswahl von Tunnelvortriebsmaschinen. Available online atwww.daub-ita.de/uploads/media/gtcrec14.pdf.

[21]  ITA (2001). Recommendations and Guidelines for Tunnel Boring Machines (TBM). Working group n°14 - mechanized tunnelling - international tunnelling association.

[22]  Ball, R.P.A., Young, D.Y., Isaacson, J., Champa, J., Gause, C. (2009). Research in soil conditioning for EPB tunneling through difficult soils. In: Almeraris, G., Mariucci, B. (Eds.), Rapid Excavation and Tunneling Conference (RETC), Las Vegas, USA, pp. 320–333.

[23]  BTS (2005). Closed-Face Tunneling Machines and Ground Stability. British Tunneling Society (Closed-Face Working Group) in association with the Institution of Civil Engineers: Thomas Telford Publishing, London (77 pp.).

[24]  ASTM D422 (2007). Standard Test Method for Particle-Size Analysis of Soil.

[25]  ASTM C143 (2003). Standard test method for Slump of Hydraulic-Cement Concrete.

[26]  Peila, D., Oggeri, C., Vinai, R. (2007). Screw conveyor device for laboratory tests on conditioned soils for EPB tunneling operations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 133, pp. 1622–162.