برآورد نیروی محوری طولی باقیمانده در پوشش تونل‌های سگمنتی ناشی از نیروی جک های پیشران TBM

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای ژئوتکنیک؛ دانشکده‌ی مهندسی عمران، دانشگاه صنعتی سهند تبریز

2 استادیار؛ دانشکده‌ی مهندسی عمران، دانشگاه صنعتی سهند تبریز

3 استاد؛ دانشکده‌ی مهندسی عمران، دانشگاه صنعتی سهند تبریز

چکیده

پوشش تونل ها در اجرا با دستگاه حفاری تمام مقطع سپری در محیط های شهری شامل قطعات بتنی (سگمنتی) می باشد که در هر گام پیشروی یک رینگ را تشکیل می دهند. جک های پیشران دستگاه حفاری، نیروی زیادی بر رینگ ها وارد می نمایند. این نیروها به تناوب کاهش یافته و مجدداً اعمال می گردند که مقداری از این نیروها در داخل پوشش باقی می‌مانند. این نیروی محوری طولی می تواند در سختی خمشی طولی کل پوشش تونل مؤثر باشد. از طرفی دوغاب تزریقی اطراف پوشش با توجه به ماهیت گیرش وابسته به زمان، تاثیر بسزایی بر مقدار این نیروی محوری دارد. در این مقاله ابتدا بر اساس نتایج حاصل از آزمایش های ادئومتری بر روی دوغاب پایه سیمانی تزریقی، مدل رفتاری وابسته به زمان برای شرایط محصور شده ارائه شده است. سپس یک روش پیشنهادی تحلیلی با استفاده از مدل رئولوژی مناسب، جهت مدلسازی ساخت مرحله ای، باگذاری چرخه ای جک های پیشران و نیز گیرش وابسته به زمان دوغاب ارائه گردید، بطوریکه امکان محاسبه نیروی باقیمانده در هر رینگ پوشش سگمنتی تونل میسر می گردد. بمنظور بررسی روش پیشنهادی، نیروی باقیمانده در پوشش تونل خط یک قطار شهری تبریز به این روش محاسبه شده و تحلیل حساسیتی نیز بر روی برخی پارامترهای اثرگذار انجام گردیده است.

کلیدواژه‌ها


Arnau, O., & Molins, C. (2015). Theoretical and numerical analysis of the three-dimensional response of segmental tunnel linings subjected to localized loads. Tunnelling and Underground Space Tech., 49, 384-399.
Arnau, O., Molins, C., Blom, C., & Walraven, J. (2012). Longitudinal time-dependent response of segmental tunnel linings. Tunnelling and Underground Space Tech.,28(1), 98-108.
ASTM D2435-03, A. C.-1. (2003). Standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM International, 1-10.
Bakker, K.J., Teunissen, E.A., Van Den Berg, P., Smits, M.T.h.J.H. (2001). The Second Heinenoord tunnel: the main monitoring results (pp. 1445). Proc. of the fifteenth international conference on soil mechanics and geotechnical engineering. Istanbul.
Blom, C. B. (2002). Design philosophy of concrete linings for tunnels in soft soils. Delft University Press.
Blom, C., Van der Horst, E., & Jovanovic, P. (1999). Three-dimensional structural analyses of the shield-driven “Green Heart” tunnel of the high-speed line south. Tunnelling and Underground Space Tech.,14(2), 217-224.
Bras, A., Henriques, F. M., & Cidade, M. (2013). Rheological behaviour of hydraulic lime-based grouts. Shear-time and temperature dependence. Mechanics of Time-Dependent Materials, 17(2), 223-242.
Chan Man Fong, C. F., & De Kee, D. (1994). Yield stress and small amplitude oscillatory flow in transient networks. Industrial and Engineering Chemistry Research,33, 2374-2376.
Chen, J., & Mo, H. (2009). Numerical study on crack problems in segments of shield tunnel using finite element method. Tunnelling and Underground Space Tech.,24(1), 91-102.
Davaille, A., Gueslin, B., Massmeyer, A., & Di Giuseppe, E. (2013). Thermal instabilities in a yield stress fluid: existence and morphology. Journal of Non-Newtonian Fluid Mechanics,193, 144-153.
Do, N.-A., Dias, D., Oreste, P., & Djeran-Maigre, I. (2014). Three-dimensional numerical simulation for mechanized tunnelling in soft ground: the influence of the joint pattern. Acta Geotechnica, 9(4),  673-694.
Do, N.-A., Dias, D., Oreste, P., & Djeran-Maigre, I. (2014). Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground. Tunnelling and Underground Space Tech., 42(11), 40-51.
Grassl, P., & Jirásek, M. (2006). Damage-plastic model for concrete failure. International Journal of Solids and Structures, 43(22-23), 7166-7196.
Guglielmetti, V., Grasso, P., Mahtab, A., & Xu, S. (2008). Mechanized tunnelling in urban areas: design methodology and construction control. CRC Press.
ITA, (2000). Guidelines for the design of shield tunnel lining. Tunnelling and Underground Space Tech., 15(3), 303-331.
Kasper, T., & Meschke, G. (2004). A 3D finite element simulation model for TBM tunnelling in soft ground. International Journal for Numerical and Analytical Methods in Geomechanics, 28(14), 1441-1460.
Kealy, T. (2006). Application of liquid and solid rheological technologies to the textural characterisation of semi-solid foods. Food Research International, 39(3), 265-276.
Koek, A.J. (2005). Axiale voorspanning in de lining van een geboorde tunnel. TU Delft, Faculty of Civil Engineering and Geosciences, Hydraulic Engineering.
Lavasan, A. A., Zhao, C., Barciaga, T., Schaufler, A., Steeb, H., & Schanz, T. (2018). Numerical investigation of tunneling in saturated soil: the role of construction and operation periods. Acta Geotechnica, 13(2), 1-21.
Lee, J., Kyung, D., Kim, B., & Prezzi, M. (2009). Estimation of the Small-Strain Stiffness of Clean and Silty Sands using Stress-Strain Curves and CPT Cone Resistance. Soils and Foundations, 49(4), 545-556.
Li, S.‐P., Zhao, G., & Chen, H.‐Y. (2005). The relationship between steady shear viscosity and complex viscosity. Journal of Dispersion Science and Tech., 26(4), 415-419.
Li, X., Zhou, X., Hong, B., & Zhu, H. (2019). Experimental and analytical study on longitudinal bending behavior of shield tunnel subjected to longitudinal axial forces. Tunnelling and Underground Space Tech., 86, 128-137.
Ma, S., Nemcik, J., Aziz, N., & Zhang, Z. (2016). Numerical modeling of fully grouted rockbolts reaching free-end slip. International Journal of Geomechanics, 16(1), 04015020.
Marwan, A., Alsahly, A., Elrehim, M. Z., & Meschke, G. (2017). Lining Induced Stresses for Mechanized Tunneling Along Curved Alignment (pp. 36-52). GeoMEast, International Congress and Exhibition, Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology.
Men, Y.-q., Liao, S.-m., & Sun, L.-y. (2018). Field Test of Longitudinal Stress Relaxation along the Shield Tunnel in Qianjiang River. Beijing: In Proceedings of the 2018 World Transport Convention.
Meschke, G., Kropik, C., & Mang, H. (1996). Numerical analyses of tunnel linings by means of a viscoplastic material model for shotcrete. Int. Journal for Numerical Methods in Engineering, 39(18), 3145-3162.
Molins, Climent. (2015). Theoretical and numerical analysis of the three-dimensional response of segmental tunnel linings subjected to localized loads. Tunnelling and Underground Space Tech., 49, 384-399.
Murakami, H., & Koizumi, A. (1978). Study on load bearing capacity and mechanics of shield segment ring. Proc of the Japan Society of Civil Engineers (pp. 103-115). Tokyo: J-Stage.
Neuner, M., Gamnitzer, P., & Hofstetter, G. (2017). An extended damage plasticity model for shotcrete: Formulation and comparison with other shotcrete models. Materials, 10(1),  82.
Ninić, J., & Meschke, G. (2017). Simulation based evaluation of time-variant loadings acting on tunnel linings during mechanized tunnel construction. Engineering Structures, 135, 21-40.
Peila, D., Borio, L., & Pelizza, S. (2011). The behaviour of a two-component back-filling grout used in a tunnel-boring machine. Acta Geotechnica Slovenica,1, 5-15.
Peila, D., Chieregato, A., Martinelli, D., Salazar, C. O., Shah, R., Boscaro, A., Picchio, A. (2015). Long term behavior of two component back-fill grout mix used in full face mechanized tunneling. Geam-Geoingegneria Ambientale e Mineraria-Geam-Geoengineering Environment and Min., 144, 57-63.
Schutz, R. (2010). Numerical modelling of shotcrete for tunnelling. London. Ph.D. Thesis, Imperial College London.
Schütz, R., Potts, D., & Zdravkovic, L. (2011). Advanced constitutive modelling of shotcrete: Model formulation and calibration. Computers and Geotechnics, 38(6), 834-845.
Shah, R., A. Lavasan, A., Peila, D., Todaro, C., Luciani, A., & Schanz, T. (2018). Numerical study on backfilling the tail void using a two-component grout. Journal of Materials in Civil Engineering, 30(3), 04018003.
Shi, C., Cao, C., Lei, M., Peng, L., & Ai, H. (2016). Effects of lateral unloading on the mechanical and deformation performance of shield tunnel segment joints. Tunnelling and Underground Space Tech., 51, 175-188.
Silva, A. B., Telles, J. C., Fairbairn, E. M., & Ribeiro, F. L. (2015). A general tangent operator applied to concrete using a multi-surface plasticity model. Computers and Concrete, 16(2), 329-342.
Singh, B., & Goel, R. K. (2006). Tunnelling in Weak Rocks. (J. A. Hudson, Ed.) Amsterdam: Elsevier B.V.
Wang, N., Zhang, J., Wang, Y., Zhang, H., Ma, Y., Zhao, L., & Guo, Q. (2020). Experimental study on mechanical properties of grout–soil interface in anchor system of rammed earthen sites. International Journal of Geomechanics, 20(6), 04020064.
Wang, Z., Wang, L., Li, L., & Wang, J. (2014). Failure mechanism of tunnel lining joints and bolts with uneven longitudinal ground settlement. Tunnelling and Underground Space Tech., 40, 300-308.
Xu, D.-P., Jiang, Q., Li, S.-J., Qiu, S.-L., Duan, S.-Q., & Huang, S.-L. (2020). Safety assessment of cable bolts subjected to tensile loads. Computers and Geotechnics, 128(5), 103832.
Ye, Z., & Liu, H. (2018). Mechanism and Countermeasure of Segmental Lining Damage Induced by Large Water Inflow from Excavation Face in Shield Tunneling. Int. Journal of Geomechanics, 18(12) 04018163.
Zhang, J., Pei, X., Wang, W., & He, Z. (2017). Hydration process and rheological properties of cementitious grouting material. Construction and Building Materials, 139(1), 221-231.
Zhao, T., Liu, W., & Ye, Z. (2017). Effects of water inrush from tunnel excavation face on the deformation and mechanical performance of shield tunnel segment joints. Advances in Civil Engineering, 6, 1-18.
Zheng, G., Zhang, T., & Diao, Y. (2015). Mechanism and countermeasures of preceding tunnel distortion induced by succeeding EPBS tunnelling in close proximity. Computers and Geotechnics, 66, 53-65.