[3] Soulioti, D. V., Barkoula, N. M., Paipetis, A., & Matikas, T. E. (2011). Effects of Fibre Geometry and Volume Fraction on the Flexural Behaviour of Steel-Fibre Reinforced Concrete.
Strain, 47(s1), 535-541.
http://dx.doi.org/10.1111/j.1475-1305.2009.00652.x.
[4] Falkner, H., & Teutsch, M. (1993). Comparative Investigations of Plain and Steel Fiber Reinforced Industrial Ground Slabs. Technical University of Brunswick. Germany: Institute of Building Materials. ISBN: 9783892880783.
[5] British Standards Institute (2006). Testing Sprayed Concrete: Determination of Energy Absorption Capacity of Fiber Reinforced Slab Specimens. BSI Standards. SN: BS EN 14488-5:2006. ISBN: 0580482367.
[7] Grimstad, E. & Barton, N. (1993). Updating the Q-system for NMT. In Kompen, Opsahl, and Berg (Ed.), Proceedings of the International Symposium on Sprayed Concrete-Modern Use of Wet Mix Sprayed Concrete for Underground Support (pp. 163-177 & 234-241). Oslo, Norway: Norwegian Concrete Association.
[8] Barton, N., Lien, R., & Lunde, J. (1974). Engineering Classification of Rock Masses for Design of Tunnel Support.
Rock Mechanics, 6(4), 189-236.
http://dx.doi.org/10.1007/BF01239496.
[9] Grimstad, E., Kankes, K., Bhasin, R., Magnussen, A. W., & Kaynia, A. (2002). Rock Mass Quality (Q) Used in Designing Reinforced Ribs of Sprayed Concrete and Energy Absorption. Oslo, Norway: Norwegian Geotechnical Institute.