Addenbrooke, T. I., & Potts, D. M. (2001). Finite element analysis of St James's Park greenfield reference site. In Building response to tunnelling: Case studies from construction of the Jubilee Line Extension, London (pp. 177-184). Thomas Telford Publishing.
Amjadi, R., Samimi Namin, F., Chakeri, H., & Rouhani, M. M. (2021). Evaluation of the effect of injection pressure on surface settlement in excavation with earth pressure balanced shield machine, A case study: Tabriz metro line 2. Tunneling & Underground Space Engineering (TUSE), 10(2), 167-181.
Bagheri, E., Dehghan, A.N., & Ahangari, K. (2020). The Effect of Operational Parameters Affecting Ground Surface in Excavation with Earth Pressure Balance Shield Machine - EPBM (the Case of Southern Extension Tunnel of Line 6 of Tehran Subway). Tunneling & Underground Space Engineering (TUSE), 9(1), 83-98.
Bastami, R., Bazzazi, A. A., Shoormasti, H. H., & Ahangari, K. (2020). Predicting and minimizing the blasting cost in limestone mines using a combination of gene expression programming and particle swarm optimization. Archives of Mining Sciences, 65(4).
Chakeri, H., Ozcelik, Y., & Unver, B. (2013). Effects of important factors on surface settlement prediction for metro tunnel excavated by EPB. Tunnelling and Underground Space Technology, 36, 14-23.
Chakeri, H., & Ünver, B. (2014). A new equation for estimating the maximum surface settlement above tunnels excavated in soft ground. Environmental earth sciences, 71, 3195-3210.
Chawla, V., Chanda, A., & Angra, S. (2019). The scheduling of automatic guided vehicles for the workload balancing and travel time minimi-zation in the flexible manufacturing system by the nature-inspired algorithm. Journal of Project Management, 4(1), 19-30.
Chou, W. I., & Bobet, A. (2002). Predictions of ground deformations in shallow tunnels in clay. Tunnelling and underground space technology, 17(1), 3-19.
Emary, E., Zawbaa, H. M., Grosan, C., & Hassenian, A. E. (2015). Feature subset selection approach by gray-wolf optimization. In Afro-European Conference for Industrial Advancement: Proceedings of the First International Afro-European Conference for Industrial Advancement AECIA 2014 (pp. 1-13). Springer International Publishing.
Ercelebi, S. G., Çopur, H., & Ocak, I. (2011). Surface settlement predictions for Istanbul Metro tunnels excavated by EPB-TBM. Environmental Earth Sciences, 62, 357-365.
Faris, H., Aljarah, I., Al-Betar, M. A., & Mirjalili, S. (2018). Grey wolf optimizer: a review of recent variants and applications. Neural computing and applications, 30, 413-435.
Fattahi, H., Ghaedi, H., & Armaghani, D. J. (2024). Optimizing fracture toughness estimation for rock structures: A soft computing approach with GWO and IWO algorithms. Measurement, 238, 115306.
Fouladgar, N., Hasanipanah, M., & Bakhshandeh Amnieh, H. (2017). Application of cuckoo search algorithm to estimate peak particle velocity in mine blasting. Engineering with Computers, 33, 181-189.
Hamza, M., Ata, A., & Roussin, A. (1999). Ground movements due to the construction of cut-and-cover structures and slurry shield tunnel of the Cairo Metro. Tunnelling and Underground Space Technology, 14(3), 281-289.
Hasanipanah, M., Noorian-Bidgoli, M., Jahed Armaghani, D., & Khamesi, H. (2016). Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling. Engineering with Computers, 32, 705-715.
Herzog, M. (1985). Surface subsidence above shallow tunnels. Bautechnik, 62(11), 375-377.
Mahmoodzadeh, A., Mohammadi, M., Daraei, A., Ali, H. F. H., Al-Salihi, N. K., & Omer, R. M. D. (2020). Forecasting maximum surface settlement caused by urban tunneling. Automation in Construction, 120, 103375.
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
Moghaddasi, M. R., & Noorian-Bidgoli, M. (2018). ICA-ANN, ANN and multiple regression models for prediction of surface settlement caused by tunneling. Tunnelling and Underground Space Technology, 79, 197-209.
Moghtader, T., Sharafati, A., Naderpour, H., & Gharouni Nik, M. (2023). Estimating maximum surface settlement caused by EPB shield tunneling utilizing an intelligent approach. Buildings, 13(4), 1051.
Neaupane, K. M., & Adhikari, N. R. (2006). Prediction of tunneling-induced ground movement with the multi-layer perceptron. Tunnelling and underground space technology, 21(2), 151-159.
Ocak, I., & Seker, S. E. (2013). Calculation of surface settlements caused by EPBM tunneling using artificial neural network, SVM, and Gaussian processes. Environmental earth sciences, 70, 1263-1276.
O'reilly, M. P., & New, B. M. (1982). Settlements above tunnels in the United Kingdom-their magnitude and prediction (No. Monograph).
Loganathan, N., & Poulos, H. G. (1998). Analytical prediction for tunneling-induced ground movements in clays. Journal of Geotechnical and geoenvironmental engineering, 124(9), 846-856.
Peck, B. B. (1969). Deep excavation and tunnelling in soft ground, State of the art volume. In 7th ICSMFE (Vol. 4, pp. 225-290).
Park, K. H. (2005). Analytical solution for tunnelling-induced ground movement in clays. Tunnelling and underground space technology, 20(3), 249-261.
Qu, Y. L. (2005). Neural network prediction of ground deformation caused by urban underground engineering. Nanjing University of Technology.
Rahmannejad, R., Esfandiary, M., Namazi, E., & Jamshidi, H. (2014). Numerical Analysis of Longitudinal and Transverse Surface Settlement Induced by EPB Tunneling- A Case Study: Shiraz Subway Tunnels. Tunneling & Underground Space Engineering (TUSE), 2(2), 87-100.
Santos Jr, O. J., & Celestino, T. B. (2008). Artificial neural networks analysis of Sao Paulo subway tunnel settlement data. Tunnelling and underground space technology, 23(5), 481-491.
Schmidt, B. (1983). A method of estimating surface settlement above tunnels constructed in soft ground. Canadian geotechnical journal, 20(1), 11-22.
Shakeri, J., Bascompta, M., Alimoradijazi, M., & Dehghani, H. (2023). Application of artificial intelligence techniques for predicting the flyrock, Sungun mine, Iran. Arabian Journal of Geosciences, 16(8), 488.
Sorabi, P., Ataei, M., Jazi, M. R. A., Dehghani, H., Shakeri, J., & Habibi, M. H. (2024). Utilizing heuristic strategies for predicting the backbreak occurrences in open-pit mines, Gol Gohar Mine, Iran. Soft Computing, 1-16.
Verruijt, A., & Booker, J. R. (1998). Surface settlements due to deformation of a tunnel in an elastic half plane. Geotechnique, 48(5), 709-713.
Vermeer, P. A. (1991). Pile settlements due to tunneling. In Proc. 10th European Conf. on Soil Mechanics and Foundation Engrg., Florence, 1991 (Vol. 2, pp. 869-872). Balkema.
Yilmaz, I., & Kaynar, O. (2011). Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert systems with applications, 38(5), 5958-5966.
Zhang, K., Lyu, H. M., Shen, S. L., Zhou, A., & Yin, Z. Y. (2020). Evolutionary hybrid neural network approach to predict shield tunneling-induced ground settlements. Tunnelling and Underground Space Technology, 106, 103594.
Zhou, J., Shi, X., Du, K., Qiu, X., Li, X., & Mitri, H. S. (2017). Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel. International Journal of Geomechanics, 17(6), 04016129.