تحلیل پایداری و پیشنهاد سیستم نگهداری در تونل‏های انحراف آب سد مشمپا زنجان با استفاده از روش‏های عددی، تجربی و همگرایی- همجواری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار؛ دانشکده فنی و مهندسی، گروه مهندسی معدن و عمران، مجتمع آموزش عالی گناباد.

2 دانش آموخته دکتری تخصصی؛ دانشکده مهندسی معدن، پردیس فنی، دانشگاه تهران.

چکیده

بررسی پایداری فضاهای زیرزمینی و طراحی سیستم نگهداری مناسب از مهم‌ترین مراحل در فرآیند حفر تونل است. روش‌های مختلفی برای بررسی وضعیت پایداری تونل‌ها وجود دارد. در این مقاله به منظور تحلیل پایداری و پیشنهاد سیستم نگهداری مورد نیاز تونل‌های انحراف آب سد مشمپای زنجان از روش‌های عددی، تجربی و همگرایی- همجواری استفاده شده است. این تونل‌ها به قطر 10 متر، فاصلۀ افقی 20 متر و اختلاف ارتفاع 6 متر نسبت به هم قرار دارند. با توجه به شرایط درزه‌داری منطقه و تأثیر آن بر وضعیت پایداری دو تونل، از نرم‏افزار عددی المان مجزای UDEC استفاده و نتایج آن با روش‌های تجربی RMRو Q مقایسه شده است. همچنین با روش‌ همگرایی- همجواری پایداری تونل‌ها مورد بررسی قرار گرفت. نتایج تحلیل عددی نشان می‏دهد که استفاده از سیستم نگهداری شاتکریت با ضخامت 10 سانتی‌متر به عنوان نگهدارندۀ موقت پایداری تونل را تضمین می‌کند و مقدار حداکثر جابجایی قائم در سقف تونل‌ها 64/8 و 16/9 میلی‌متر می‌باشد. ضریب اطمینان سیستم نگهداری برابر 5/3 و 02/2 با روش همگرایی- همجواری برای تونل‌ها برآورد شد.

کلیدواژه‌ها

موضوعات


 Bahrani, N., & Hadjigeorgiou, J. (2018). Influence of Stope Excavation on Drift Convergence and Support Behavior: Insights from 3D Continuum and Discontinuum Models. Rock Mechanics and Rock Engineering, 51(8), 2395-2413. doi:10.1007/s00603-018-1482-5
Barton, N. (2012). Reducing risk in long deep tunnels by using TBM and drill-and-blast methods in the same project–the hybrid solution. Journal of Rock Mechanics Geotechnical Engineering, 4(2), 115-126.
Barton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics and Rock Engineering, 6(4), 189-236.
Bhasin, R., & Høeg, K. (1998). Parametric study for a large cavern in jointed rock using a distinct element model (UDEC—BB). International Journal of Rock Mechanics Mining Sciences, 35(1), 17-29.
Bieniawski, Z. T. (1989). Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering: John Wiley & Sons.
Cacciari, P. P., & Futai, M. M. (2021). The Influence of Fresh and Weathered Rock Foliation on the Stability of the Monte Seco Tunnel. Rock Mechanics and Rock Engineering, 54(2), 537-558. doi:10.1007/s00603-020-02292-z
Cai, M. (2008). Influence of stress path on tunnel excavation response–Numerical tool selection and modeling strategy. Tunnelling Underground Space Technology, 23(6), 618-628.
Chen, M., Yang, S. Q., Zhang, Y. C., & Zang, C. W. (2016). Analysis of the failure mechanism and support technology for the Dongtan deep coal roadway. Geomechanics engineering, 11(3), 401-420.
Cundall, P. A., & Hart, R. D. (1992). Numerical modelling of discontinua. Engineering computations.
Dasgupta, B., Sharma, M., Verma, M., & Sharma, V. (1999). Design of underground caverns for Tehri Hydropower Project, India by numerical modelling. Paper presented at the 9th ISRM Congress.
Evgin, E., & Fu, Z. (2009). Distinct element and finite element analyses of underground excavations in jointed rock mass. Paper presented at the Canadian Geotechnical Conference.
Fan, S. C., Jiao, Y. Y., & Zhao, J. (2004). On modelling of incident boundary for wave propagation in jointed rock masses using discrete element method. Computers Geotechnics, 31(1), 57-66.
Farhadian, H., Nikvar Hassani, A., & Katibeh, H. (2017). Groundwater inflow assessment to Karaj Water Conveyance tunnel, northern Iran. KSCE Journal of Civil Engineering, 21(6), 2429-2438. doi:10.1007/s12205-016-0995-2
Gao, F., Stead, D., & Kang, H. (2014). Simulation of roof shear failure in coal mine roadways using an innovative UDEC Trigon approach. Computers and Geotechnics, 61, 33-41. doi:https://doi.org/10.1016/j.compgeo.2014.04.009
Gattinoni, P., & Scesi, L. (2010). An empirical equation for tunnel inflow assessment: application to sedimentary rock masses. Hydrogeology Journal, 18(8), 1797-1810. doi:10.1007/s10040-010-0674-1
Goodman, R. E., Moye, D. G., Van Schalkwyk, A., & Javandel, I. (1964). Ground water inflows during tunnel driving: College of Engineering, University of California.
Grimstad, E. (1993). Updating the Q-system for NMT. Paper presented at the Proceedings of the International Symposium on Sprayed Concrete-Modern use of wet mix sprayed concrete for underground support, Fagemes, Oslo, Norwegian Concrete Association, 1993.
Guan, Z., Jiang, Y., & Tanabasi, Y. (2007). Ground reaction analyses in conventional tunnelling excavation. Tunnelling Underground Space Technology, 22(2), 230-237.
Hao, Y., & Azzam, R. (2005). The plastic zones and displacements around underground openings in rock masses containing a fault. Tunnelling Underground Space Technology, 20(1), 49-61.
Hoek, E., Kaiser, P. K., & Bawden, W. F. (2000). Support of underground excavations in hard rock: CRC Press.
Itasca, C. G. (2004). UDEC: Itasca.
Jiao, Y., Fan, S., & Zhao, J. (2005). Numerical investigation of joint effect on shock wave propagation in jointed rock masses. Journal of Testing Evaluation, 33(3), 1-7.
Johansson, E., & Kuula, H. (1995). Three-dimensional back-analysis calculations of Viikinmaki underground sewage treatment plant in Helsinki. Paper presented at the 8th ISRM Congress.
Karampinos, E., Hadjigeorgiou, J., Hazzard, J., & Turcotte, P. (2015). Discrete element modelling of the buckling phenomenon in deep hard rock mines. International Journal of Rock Mechanics and Mining Sciences, 80, 346-356. doi:https://doi.org/10.1016/j.ijrmms.2015.10.007
Lee, S. W., Jung, J. W., Nam, S. W., & Lee, I.-M. (2007). The influence of seepage forces on ground reaction curve of circular opening. Tunnelling Underground Space Technology, 22(1), 28-38.
Li, S., Wang, Z., Ping, Y., Zhou, Y., & Zhang, L. (2014). Discrete element analysis of hydro-mechanical behavior of a pilot underground crude oil storage facility in granite in China. Tunnelling and Underground Space Technology, 40, 75-84. doi:https://doi.org/10.1016/j.tust.2013.09.010
Mobini, A., Mir Rahimi, M. R., Kooshki, M. R., & Sajoodi, K. (2006). Engineering Geology Report of Meshmpa Project. Retrieved from
Pariseau, W. G. (2017). Design Analysis in Rock Mechanics 3rd Edition (3rd Edition ed.).
Peyravi Nasab, P., Bakhshandeh Amnieh, H., & Siamaki, A. (2009). Technical and Economic Study of Selecting the Optimal Suppoting Method for Injection Gallery of Level 107 on the Left Side of Gotvand Olya Dam and Hydropower Plant. Paper presented at the Third Iranian Mining Engineering Conference.
Rahmani, N., Nikbakhtan, B., Ahangari, K., & Apel, D. (2012). Comparison of empirical and numerical methods in tunnel stability analysis. International Journal of Mining, Reclamation and Environment, 26(3), 261-270. doi:10.1080/17480930.2011.611615
Singh, T. D., & Singh, B. (2006). Elsevier Geo-Engineering Book 5: Tunnelling In Weak Rocks (Vol. 5): Elsevier.
Sitharam, T., & Latha, G. M. (2002). Simulation of excavations in jointed rock masses using a practical equivalent continuum approach. International Journal of Rock Mechanics Mining Sciences, 39(4), 517-525.
Son, M., & Cording Edward, J. (2011). Responses of Buildings with Different Structural Types to Excavation-Induced Ground Settlements. Journal of Geotechnical and Geoenvironmental Engineering, 137(4), 323-333. doi:10.1061/(ASCE)GT.1943-5606.0000448
Sun, X., Zhao, C., Tao, Z., Kang, H., & He, M. (2021). Failure mechanism and control technology of large deformation for Muzhailing Tunnel in stratified rock masses. Bulletin of Engineering Geology and the Environment, 80(6), 4731-4750. doi:10.1007/s10064-021-02222-5
Unal, E. (1983). Design guidelines and roof control standards for coal mine roofs (Vol. 13): Pennsylvania State University.
Varma, M., Maji, V. B., & Boominathan, A. (2019). Numerical modeling of a tunnel in jointed rocks subjected to seismic loading. Underground Space, 4(2), 133-146. doi:https://doi.org/10.1016/j.undsp.2018.11.001
Xia, Y., Peng, S., Gu, Z., & Ma, J. (2007). Stability analysis of an underground power cavern in a bedded rock formation. Tunnelling Underground Space Technology, 22(2), 161-165.
Yoshida, H., Horii, H., & Uno, H. (1995). Micromechanics-based continuum theory for jointed rock mass and analysis of large-scale cavern excavation. Paper presented at the 8th ISRM Congress.