نوع مقاله : مقاله پژوهشی
نویسندگان
1 کارشناسی ارشد؛ دانشکده مهندسی معدن، دانشگاه صنعتی امیرکبیر، تهران.
2 کارشناسی ارشد؛ دانشکده فنی و مهندسی، دانشگاه تربیت مدرس، تهران.
3 دانشجوی دکتری؛ دانشکده فنی و مهندسی، دانشگاه تربیت مدرس، تهران.
4 کارشناسی ارشد؛ دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان، اصفهان.
5 عضو پیوسته انجمن تونل ایران، کارگروه تونلهای عمیق و طویل، تهران.
چکیده
کلیدواژهها
موضوعات
Agyei, G., & Nkrumah, M. O. (2021). A review on the prediction and assessment of powder factor in blast fragmentation. Nigerian Journal of Technology, 40(2), 275–283. https://doi.org/10.4314/njt.v40i2.13
Alipour, A., Mokhtarian-Asl, M., & Asadizadeh, M. (2021). Support vector machines for the estimation of specific chargin tunnel blasting. Periodica Polytechnica Civil Engineering, 65(3), 967–976. https://doi.org/10.3311/PPci.17790
Azimi, Y., Osanloo, M., Aakbarpour-Shirazi, M., & Aghajani Bazzazi, A. (2010). Prediction of the blastability designation of rock masses using fuzzy sets. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1126–1140. https://doi.org/10.1016/j.ijrmms.2010.06.016
Barton, N. R. (1974). Engineering classification of rock masses for the design of tunnel support. Rock mechanics, 189-236.
Bienawski, Z. T. (1976). Rock mass classifications in rock engineering.
Berta, G. (1990) Explosive: An Engineering Tool, Italesplosive
Chatziangelou, M. C. (2016). geological classification of rock mass quality and blast ability for widely spaced formations. . Journal of Geological Resource and Engineering, 160–174
Chakraborty, A. K., Jethwa, J. L., & Paithankar, A. G. (1994). Assessing the effects of joint orientation and rock mass quality on fragmentation and overbreak in tunnel blasting. Tunnelling and Underground Space Technology Incorporating Trenchless, 9(4), 471–482. https://doi.org/10.1016/0886-7798(94)90106-6
Chakraborty, A. K., Raina, A. K., Ramulu, M., Choudhury, P. B., Haldar, A., Sahu, P., & Bandopadhyay, C. (2004). Parametric study to develop guidelines for blast fragmentation improvement in jointed and massive formations. Engineering Geology, 73(1–2), 105–116. https://doi.org/10.1016/j.enggeo.2003.12.003
Chen, J., Qiu, W., Zhao, X., Rai, P., Ai, X., & Wang, H. (2021). Experimental and numerical investigation on overbreak control considering the influence of initial support in tunnels. Tunnelling and Underground Space Technology, 115(January), 104017. https://doi.org/10.1016/j.tust.2021.104017.
Chapman, David, Nicole Metje, Alfred Stark, and David N. Chapman. Introduction to tunnel construction. Crc Press, 2017.
Dey, K., & Murthy, V. M. S. R. (2012). Prediction of blast-induced overbreak from uncontrolled burn-cut blasting in tunnels driven through medium rock class. Tunnelling and Underground Space Technology, 28(1), 49–56. https://doi.org/10.1016/j.tust.2011.09.004.
Dyno Nobel, Explosives Engineers Guide,2020.
Girmscheid, G., & Schexnayder, C. (2002). Drill and Blast Tunneling Practices. Practice Periodical on Structural Design and Construction, 7(3), 125–133. https://doi.org/10.1061/(asce)1084-0680(2002)7:3(125)
Hoek, E., & Brown, E. T. (2019). The Hoek–Brown failure criterion and GSI – 2018 edition. Journal of Rock Mechanics and Geotechnical Engineering, 11(3), 445–463. https://doi.org/10.1016/j.jrmge.2018.08.001
Hindistan, M. Ali, and Özgür SATICI. (2006). Drilling & Blasting as a Tunnel Excavation Method.
Hustrulid, William A., and Stephen R. Iverson. (2013). "A new perimeter control blast design concept for underground metal/nonmetal drifting applications.
Koopialipoor, M., Jahed Armaghani, D., Haghighi, M., & Ghaleini, E. N. (2019). A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels. Bulletin of Engineering Geology and the Environment, 78(2), 981–990. https://doi.org/10.1007/s10064-017-1116-2.
Konya, C.J. (1995) Blast Design, Inter Continental Development Corporation..
Jalali, S. E., & Eftekari, M. (2008). An Experimental Criterion to Determine Pillar Strength in Salt Mines. Modern Management of Mine Prouducting, Geology & Environmental Protection (pp. 27-34). Albena: International Scientific GeoConference.
Jalali, S. E., & Forouhandeh, S. F. (2011, June). Reliability Estimation of Auxiliary Ventilation Systems in Long Tunnels during Construction. Safety Science, 49(5), 664-669.
Jalali, S. M., Emami, M., Najafi, M., Gharib-Bolok, F., Mohammadi, H., & Ramezanzadeh, A. (2015). Underground Coal Gasification as a Strategy to Improve Energy Economy of Iran. Iranian Energy Economics, 4(13), 63-88. Retrieved from http://jiee.atu.ac.ir/article_852_202.html
Lee, J. S., Ahn, S. K., & Sagong, M. (2016). Attenuation of blast vibration in tunneling using a pre-cut discontinuity. Tunnelling and Underground Space Technology, 52, 30–37. https://doi.org/10.1016/j.tust.2015.11.010
Langfors, U. and kihlistrom, B. (1978) The Modern Technique of Rock Blasting (3rd edn), Holsted press.
Lilly, P. A. (1986). An empirical method of assessing rock mass blastability.
Olofsson, S. (1998). Applications Explosive Technology for Construction and Mining,. Applex Publishe.
Ostovar, R. (2017). Blasting in mines. (J. D. Industrial unit) Amirkabir
Jimeno, C. Lopez and Jimeno, E. Lopez. (1995) Drilling and Blasting of Rocks, A.A.Balkema.
Maria Chatziangelou, & Basile Christaras. (2017). A New Development of BQS (Blastability Quality System) for Closely Spaced Formations. Journal of Geological Resource and Engineering, 5(1), 24–37. https://doi.org/10.17265/2328-2193/2017.01.003
Mohammadi, H., & Barati, B. (2018). Development of a Rock Fragmentation Model for Using in Tunnel Blasts. Geotechnical and Geological Engineering, 36(4), 2379–2390. https://doi.org/10.1007/s10706-018-0469-z
Monjezi, M., Bahrami, A., & Yazdian Varjani, A. (2010). Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks. International Journal of Rock Mechanics and Mining Sciences, 47(3), 476–480. https://doi.org/10.1016/j.ijrmms.2009.09.008
Murthy, V. M. S. R., & Dey, K. (2003). Predicting overbreak from blast vibration monitoring in a lake tap tunnel - A success story. Fragblast, 7(3), 149–166. https://doi.org/10.1076/frag.7.3.149.16787.
Maidl, Bernhard, Markus Thewes, and Ulrich Maidl. Handbook of Tunnel Engineering, Vol. 1 and Vol. II. Ernst, Wilhelm & Sohn, 2013.
Paithankar, A. (1998). Agyei, G. and Nkrumah, M.O., 2021. A review on the prediction and assessment of powder factor in blast fragmentation. Nigerian Journal of Technology, 40(2),275-283
Pells, P. B. (2016). Rock quality designation (RQD): time to rest in peace. Can. Geotech. J. . 54, 825–834.
Salmi, E. F., & Sellers, E. J. (2021). A review of the methods to incorporate the geological and geotechnical characteristics of rock masses in blastability assessments for selective blast design. Engineering Geology, 281(June 2019), 105970. https://doi.org/10.1016/j.enggeo.2020.105970.
Singh, Bhawani, and R. K. Goel. Tunnelling in Weak Rocks. Elsevier Geo-Engineering Book Series, Volume 5. Elsevier Science & Technology, 2006.
Salum, A. H., & Murthy, V. M. S. R. (2019). Optimising blast pulls and controlling blast-induced excavation damage zone in tunnelling through varied rock classes. Tunnelling and Underground Space Technology, 85(July 2017), 307–318. https://doi.org/10.1016/j.tust.2018.11.029
Salehi,E., Moghadam, M., Khani, J., haji hasani, M., Rostamabadi, S. (2022). Investigation of optimal methods for drilling and blasting tunnels pattern in P-Cut under the influence of economic indices of blasting. Tunnel engineering and underground spaces, doi: 10.22044/tuse.2022.11927.1455
Sanchidri´an, J. S. (2018). Energy efficiency in rock blasting. In: Awuah-Offei, K. (Ed.), Energy Efficiency in the Minerals Industry. . Springer, pp. 87–118.
Singh, B., & Goel, R. K. (2006). Tunnelling in Weak Rocks. (J. A. Hudson, Ed.) Amsterdam: Elsevier B.V.
Soroush, K., Mehdi, Y., & Arash, E. (2015). Trend analysis and comparison of basic parameters for tunnel blast design models. International Journal of Mining Science and Technology, 25(4), 595–599. https://doi.org/10.1016/j.ijmst.2015.05.012.
NORWEGIAN TUNNELLING SOCIETY. NORWEGIAN TUNNELLING TECHNOLOGY. Publication No. 23. (2014).
USACE, Engineering and Design blasting for rock excavations. Engineering Manual EM 1110-2-3800, US Army Corps of Engineers, 20189
Verma, H. K., Samadhiya, N. K., Singh, M., Goel, R. K., & Singh, P. K. (2018). Blast induced rock mass damage around tunnels. Tunnelling and Underground Space Technology, 71(March 2017), 149–158. https://doi.org/10.1016/j.tust.2017.08.019
Wang, M., Zhao, S., Tong, J., Wang, Z., Yao, M., Li, J., & Yi, W. (2021). Intelligent classification model of surrounding rock of tunnel using drilling and blasting method. Underground Space (China), 6(5), 539–550. https://doi.org/10.1016/j.undsp.2020.10.001.
Weidong Duan, Shigao Hu. The best choice of empty blasting hole spacing in the presplit blasting[J]. Mineral Engineering Research, 2012.
Yang, Z., He, B., Liu, Y., Wang, D., & Zhu, G. (2021). Classification of rock fragments produced by tunnel boring machine using convolutional neural networks. Automation in Construction, 125(January), 103612. https://doi.org/10.1016/j.autcon.2021.103612
Tatiya, Ratan. Civil excavations and tunnelling: A practical guide. Thomas Telford, 2005.
Zare, S., & Bruland, A. (2006). Comparison of tunnel blast design models. Tunnelling and Underground Space Technology, 21(5), 533–541.
Zou, Dingxiang. (2017). Theory and technology of rock excavation for civil engineering. Springer Singapore.