[1] Attewell, P. B., Yeates, J., & Selby, A. R. (1986). Soil Movements Induced by Tunneling and Their Effects on Pipelines and Structures. Blackie. ISBN: 0412009110.
[3] Katzenbach, R., & Breth, H. (1981). Nonlinear 3D Analysis for NATM in Frankfurt Clay. Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering (pp. 315-318). Rotterdam: Balkema. ISBN: 9061912105.
[4] Desari, G. R., Rawlings, C. G., & Bolton, M. D. (1996). Numerical Modelling of a NATM Tunnel Construction in London Clay. Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground at London (pp. 491-496). Rotterdam: Balkema. ISBN: 9054108568.
[5] Tang, D. K. W., Lee, K. M., & Ng, C. W. W. (2000). Stress Paths around a 3-D Numerically Simulated NATM Tunnel in Stiff Clay. Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground at Tokyo (pp. 443-449). Rotterdam: Balkema. ISBN: 9058091066.
[6] Vermeer, P. A., Bonnier, P. G., & Maoller, S. C. (2002). On a Smart Use of 3D-FEM in Tunnelling. Proceedings of the 8th International Symposium on Numerical Models in Geomechanics (pp. 361-366). Rotterdam: A. A. Balkema. ISBN: 905809359X.
[7] Lee, K. M., & Rowe, R. K. (1991). An Analysis of Three-Dimensional Ground Movements: The Thunder Bay Tunnel.
Canadian Geotechnical Journal, 28(1),
25-41.
http://dx.doi.org/10.1139/t91-004.
[8] Augarde, C. E., Burd, H. J., & Houlsby, G. T. (1998). Some Experience of Modelling Tunneling in Soft Ground Using Three-Dimensional Finite Elements.
4th European conference on Numerical Methods in Geotechnical Engineering (pp. 603-612). Springer-Verlag. ISBN: 3-211-83141-X.
http://www-civil.eng.ox.ac.uk/people/gth/c/c49.pdf.
[9] Burd, H. J., Houlsby, G. T., Augarde, C. E., & Liu, G. (2000). Modelling Tunnelling-Induced Settlement of Masonry Buildings.
Proceedings of the Institution of Civil Engineers, Geotechnical Engineering: vol 143 (pp. 17-29).
http://www-civil.eng.ox.ac.uk/people/gth/j/j48.pdf.
[10] Guedes, P. F. M., & Santos Pereira, C. (2000). The Role of The Soil K0 Value in Numerical Analysis of Shallow Tunnels. Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground at Tokyo (pp. 379-384). Rotterdam: Balkema. ISBN: 9058091066.
[11] Lee, G. T. K., & Ng, C. W. W. (2002). Three-Dimensional Analysis of Ground Settlements due to Tunnelling: Role of K0 and stiffness Anisotropy. Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground at Lyon (pp. 617-622). ISBN: 2-9510416-3-2.
[12] Komiya, K., Soga, K., Akagi, H., Hagiwara, T., & Bolton, M. D. (1999). Finite Element Modelling of Excavation and Advancement Process of a Shield Tunnelling Machine.
Soil & Foundations, 39(3), 37-52.
http://www-civ.eng.cam.ac.uk/geotech_new/people/bolton/mdb_pub/85_soils_found_vol39_no3_37_52.PDF.
[13] Dias, D., Kastner, R., & Maghazi, M. (2000). Three Dimensional Simulation of Slurry Shield in Tunnelling. Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground at Tokyo (pp. 351-356). Rotterdam: Balkema. ISBN: 9058091066.
[14] Anagnostou, G., (2007). Continuous Tunnel Excavation in a Poro-Elastoplastic Medium.
Proceedings of the 10th International Symposium on Numerical Models in Geomechanics: NUMOG X (pp. 183-188). Rhodes. Taylor & Francis Group. ISSN: 9780415440271.
http://www.tunnel.ethz.ch/people/ganagnos/continous.
[16] Kimura, T., & Mair, R. J. (1981). Centrifugal Testing of Model Tunnels in Soft Clay. The 10th International Conference on Soil Mechanics and Foundation Engineering (pp. 319-322). Rotterdam: Balkema. ISBN: 9061912105.
[17] شرکت پژوهش عمران راهوار. (2009). گزارش مطالعات ژئوتکنیک و مهندسی پی پروژهی تونل ملت. گزارش شماره: SADR-SE00-REP-GEO-03-I00-35.