مطالعه‌ی تاثیر وزن و هندسه‌ی ساختمان بر نشست سطح زمین ناشی از تونلسازی مرحله‌ای با استفاده از روش عددی اجزای محدود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مکانیک سنگ؛ گروه معدن؛ دانشکده‌ی فنی و مهندسی؛ دانشگاه لرستان

2 دانشیار؛ دانشکده‌ی مهندسی معدن و متالورژی؛ دانشگاه صنعتی امیرکبیر

چکیده

با توجه به مشکلات ترافیکی شهرهای بزرگ، نیاز به ساخت تونل‌های شهری اجتناب‌ناپذیر است. حفر تونل سبب تغییر میدان تنش برجا شده و یک ناحیه‌ی تغییر مکان در محدوده‌ی اطراف تونل بوجود می‌آورد. در این خصوص نه تنها ساختمان‌های مجاور تحت تاثیر حفاری تونل قرار می‌گیرند؛ بلکه میدان تنش و تغییر مکان حاصله، متاثر از مشخصات ساختمان‌های مجاور خواهد بود. این موضوع یکی از جنبه‌های مهم تونلسازی محیط شهری است. بنابراین لازم است پیش از مرحله‌ی ساخت، پارامترهای موثر بر این رابطه‌ی متقابل بررسی شود. در این پژوهش فاکتورهای اصلی ساختمان نظیر وزن، عرض و طول آن، با استفاده از روش اجزا محدود بصورت سه‌بعدی شبیه‌سازی شده است. نتایج نشان می‌دهد، حضور ساختمان‌های سطحی اثرات دوگانه‌ای بر گودی نشست سطح زمین دارند. افزایش وزن ساختمان موجب افزایش نشست سطح زمین شده و از طرفی، صرف نظر از وزن ساختمان، بواسطه‌ی وجود پی ساختمان و صلبیت ناشی از آن، که موجب بهبود شرایط زمین می‌شود، نشست در سطح زمین نسبت به شرایط بدون وجود ساختمان،کاهش می‌یابد. افزایش عرض ساختمان منجر به کاهش نشست در سطح زمین شده و افزایش طول ساختمان، نشست در سطح زمین را افزایش می‌دهد. هر چند عرض ساختمان فاکتور موثرتری نسبت به طول ساختمان در مهار رفتار متقابل ساختمان-تونل است.

کلیدواژه‌ها

موضوعات


[1]     Attewell, P. B., Yeates, J., & Selby, A. R. (1986). Soil Movements Induced by Tunneling and Their Effects on Pipelines and  Structures. Blackie. ISBN: 0412009110.
[2]     Franzius, J. N. (2003). Behaviour of Buildings due to Tunnel Induced Subsidence. London: Doctoral Thesis, Department of Civil and Environmental Engineering, Imperial College of  Science, Technology and Medicine. https://www3.imperial.ac.uk/pls/portallive/docs/1/985903.PDF.
[3]     Katzenbach, R., & Breth, H. (1981). Nonlinear 3D Analysis for NATM in Frankfurt Clay. Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering (pp. 315-318). Rotterdam: Balkema. ISBN: 9061912105.
[4]     Desari, G. R., Rawlings, C. G., & Bolton, M. D. (1996). Numerical Modelling of a NATM Tunnel Construction in London Clay. Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground at London (pp. 491-496). Rotterdam: Balkema. ISBN: 9054108568.
[5]     Tang, D. K. W., Lee, K. M., & Ng, C. W. W. (2000). Stress Paths around a 3-D Numerically Simulated NATM Tunnel in Stiff Clay. Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground at Tokyo (pp. 443-449). Rotterdam: Balkema. ISBN: 9058091066.
[6]     Vermeer, P. A., Bonnier, P. G., & Maoller, S. C. (2002). On a Smart Use of 3D-FEM in Tunnelling. Proceedings of the 8th International Symposium on Numerical Models in Geomechanics (pp. 361-366). Rotterdam: A. A. Balkema. ISBN: 905809359X.
[7]     Lee, K. M., & Rowe, R. K. (1991). An Analysis of Three-Dimensional Ground Movements: The Thunder Bay Tunnel. Canadian Geotechnical Journal, 28(1), 25-41. http://dx.doi.org/10.1139/t91-004.
[8]     Augarde, C. E., Burd, H. J., & Houlsby, G. T. (1998). Some Experience of Modelling Tunneling in Soft Ground Using Three-Dimensional Finite Elements. 4th European conference on Numerical Methods in Geotechnical Engineering (pp. 603-612). Springer-Verlag. ISBN: 3-211-83141-X. http://www-civil.eng.ox.ac.uk/people/gth/c/c49.pdf.
[9]     Burd, H. J., Houlsby, G. T., Augarde, C. E., & Liu, G. (2000). Modelling Tunnelling-Induced Settlement of Masonry Buildings. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering: vol 143 (pp. 17-29). http://www-civil.eng.ox.ac.uk/people/gth/j/j48.pdf.
[10]  Guedes, P. F. M., & Santos Pereira, C. (2000). The Role of The Soil K0 Value in Numerical Analysis of Shallow Tunnels. Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground at Tokyo (pp. 379-384). Rotterdam: Balkema. ISBN: 9058091066.
[11]  Lee, G. T. K., & Ng, C. W. W. (2002). Three-Dimensional Analysis of Ground Settlements due to Tunnelling: Role of K0 and stiffness Anisotropy. Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground at Lyon (pp. 617-622). ISBN: 2-9510416-3-2.
[12]  Komiya, K., Soga, K., Akagi, H., Hagiwara, T., & Bolton, M. D. (1999). Finite Element Modelling of Excavation and Advancement Process of a Shield Tunnelling Machine. Soil & Foundations, 39(3), 37-52. http://www-civ.eng.cam.ac.uk/geotech_new/people/bolton/mdb_pub/85_soils_found_vol39_no3_37_52.PDF.
[13]  Dias, D., Kastner, R., & Maghazi, M. (2000). Three Dimensional Simulation of Slurry Shield in Tunnelling. Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground at Tokyo (pp. 351-356). Rotterdam: Balkema. ISBN: 9058091066.
[14]  Anagnostou, G., (2007). Continuous Tunnel Excavation in a Poro-Elastoplastic Medium. Proceedings of the 10th International Symposium on Numerical Models in Geomechanics: NUMOG X (pp. 183-188). Rhodes. Taylor & Francis Group. ISSN: 9780415440271. http://www.tunnel.ethz.ch/people/ganagnos/continous.
[15]  Dimmock, P. S., & Mair, R. J., (2008). Effect of Building Stiffness on Tunnelling-Induced Ground Movement. Tunnelling and Underground Space Technology, 23(4), 438-450. http://dx.doi.org/10.1016/j.tust.2007.08.001.
[16]  Kimura, T., & Mair, R. J. (1981). Centrifugal Testing of Model Tunnels in Soft Clay. The 10th International Conference on Soil Mechanics and Foundation Engineering (pp. 319-322). Rotterdam: Balkema. ISBN: 9061912105.
[17]  شرکت پژوهش عمران راهوار. (2009). گزارش مطالعات ژئوتکنیک و مهندسی پی پروژه‌ی تونل ملت. گزارش شماره: SADR-SE00-REP-GEO-03-I00-35.