Caratelli, A., Meda, A., Rinaldi, Z., & Romualdi, P. (2011). Structural behaviour of precast tunnel segments in fiber reinforced concrete. Tunnelling and Underground Space Technology, 26(2), 284-291.
Caratelli, A., Meda, A., Rinaldi, Z., & Spagnuolo, S. (2016). Precast tunnel segments with GFRP reinforcement. Tunnelling and Underground Space Technology, 60, 10-20.
Chiaia, B., Fantilli, A. P., & Vallini, P. (2009). Combining fiber-reinforced concrete with traditional reinforcement in tunnel linings. Engineering Structures, 31(7), 1600-1606.
Conforti, A., Tiberti, G., & Plizzari, G. A. (2016a). Combined effect of high concentrated loads exerted by TBM hydraulic jacks.
Magazine of Concrete Research,
68(21), 1122-1132.
https://doi.org/10.1680/jmacr.15.00430
Conforti, A., Tiberti, G., Plizzari, G. A., Caratelli, A., & Meda, A. (2017). Precast tunnel segments reinforced by macro-synthetic fibers.
Tunnelling and Underground Space Technology,
63, 1-11.
https://doi.org/https://doi.org/10.1016/j.tust.2016.12.005
Conforti, A., Trabucchi, I., Tiberti, G., Plizzari, G. A., Caratelli, A., & Meda, A. (2019). Precast tunnel segments for metro tunnel lining: A hybrid reinforcement solution using macro-synthetic fibers. Engineering Structures, 199, 109628.
Dixon, D., Secretary, Burg, G. R. U., Abdun-Nur, E., Barton, S. G., Bell, L., Blas, S. J., Ramon, Carrasquillo, Carrasquillo, P., Carter, A. C., Conrey, M. T., Cook, J., Cook, R. A., Cordon, W., Costa, W. J., Abdun-Nurt, E. A., Barringer-t, W. L., Bennett, J., . . . Roget, J. (1997). ACI 211 . 191. In Standard Practice for Selecting Proportions for Normal , Heavyweight , and Mass Concrete: Reported by ACI Committee 211.
Gooranorimi, O., Suaris, W., & Nanni, A. (2017). A model for the bond-slip of a GFRP bar in concrete. Engineering Structures, 146, 34-42.
Iyengar, K. (1962). Two-Dimensional Theories of Anchorage Zone Stresses in Post-Tensioned Prestressed Beams.
Meda, A., Rinaldi, Z., Spagnuolo, S., De Rivaz, B., & Giamundo, N. (2019). Hybrid precast tunnel segments in fiber reinforced concrete with glass fiber reinforced bars.
Tunnelling and Underground Space Technology,
86, 100-112.
https://doi.org/https://doi.org/10.1016/j.tust.2019.01.016
Nogales, A., & de la Fuente, A. (2020). Crack width design approach for fibre reinforced concrete tunnel segments for TBM thrust loads. Tunnelling and Underground Space Technology, 98, 103342.
Ou, Y.-C., Tsai, M.-S., Liu, K.-Y., & Chang, K.-C. (2012). Compressive behavior of steel-fiber-reinforced concrete with a high reinforcing index. Journal of Materials in Civil Engineering, 24(2), 207-215.
Shi, X., Park, P., Rew, Y., Huang, K., & Sim, C. (2020). Constitutive behaviors of steel fiber reinforced concrete under uniaxial compression and tension. Construction and Building Materials, 233, 117316.
Spagnuolo, S., Meda, A., Rinaldi, Z., & Nanni, A. (2017). Precast concrete tunnel segments with GFRP reinforcement. Journal of Composites for Construction, 21(5), 04017020.
Sugimoto, M. (2006). Causes of shield segment damages during construction. International Symposium on Underground Excavation and Tunnelling,
Wahalathantri, B., Thambiratnam, D., Chan, T., & Fawzia, S. (2011). A material model for flexural crack simulation in reinforced concrete elements using ABAQUS. Proceedings of the first international conference on engineering, designing and developing the built environment for sustainable wellbeing,
Wight, J. K., & MacGregor, J. G. (2020). Reinforced concrete mechanics and design.
Wittke, W., Erichsen, C., & Gattermann, J. (2007). Stability analysis and design for mechanized tunnelling. Geotechnical Engineering in Research and Practice, 581.