Adoko, A., & Yagiz, S. (2018). Fuzzy Inference System-Based for TBM Field Penetration Index Estimation in Rock Mass. Geotech Geol Eng. doi.org/10.1007/s10706-018-0706-5
Adoko, A., Alipov, A., & Yabukov, K. (2019). A Comparative Study of TBM Penetration Rate Assessment Rock Mass Properties. American Rock Mechanics Association. New York.
Cassinelli, F., Cina, S., Innaurato, N., Mancin, R., & Saopaolo, A. (1982). Power consumption and metal wear in tunnel-boring machines: analysis of tunnel boring operation in hard rock. Tunnelling'82, Jones, M.J.Ed., 73-81.
Farmer, I., & Glossop, N. (1980). Mechanics of disc cutter penetration. Tunnels Tunnell, 22-25.
Farrokh, E. (2020). Tunnelling and Underground Space Technology. doi:10.1016/j.tust.2019.103219
Farrokh, E., Rostami, J., & Laughton, C. (2012). Study of various models for estimation of penetration rate of hard rock TBMs. Tunnelling and Underground Space Technology, 110-123. doi:10.1016/j.tust.2012.02.012
Gholami, M., Shahriar, K., Sharifzadeh, M., & Khademi Hamidi, J. (2012). A comparison of artificial neural networks and multiple regression analysis in TBM performance prediciton. Asian Rock Mechanics Symposium, (pp. 15-19). Seoul.
Gong, Q., & Zhao, J. (2009). Development of a rock mass characteristics model for TBM penetration rate prediction. International Journal of Rock Mechanics and Mining Sciences, 8-18.
Gong, Q., Yin, H., & Zhao, J. (2016). TBM tunneling under adverse geological conditions: An overview. Tunneling and Underground Space Technology, 4-17.
Graham, P. (1976). Rock exploration for machine manufacturers. Bieniawski ZR Exploration for rock engineering, (pp. 173-180). Balkema.
Grima, M., Bruines, P., & Verhoef, P. (2000). Modeling Tunnel Boring Machine Performance by Neuro-Fuzzy Methods. Tunnelling and Underground Space Technology, 259-269.
Hassanpour, J., Rostami, J., & Zhao, J. (2011). A new hard rock TBM performance prediction model for project planning. Tinnelling and Underground Space Technology, 595-603.
Hedayatzadeh, M., Shahriar, K., & Khademi Hamidi, J. (2010). An Artificial Neural Network Model To Predict The Performance of Hard Rock TBM. ISRM International Symposium (pp. 23-27). New Delhi: India.
Innaurato, N., Mancini, R., Rondena , E., & Zaninetti, A. (1991). Forecasting and effective TBM performances in a rapid excavation of a tunnel in Italy. 7th international congress ISRM. Aachen.
Khademi Hamidi, J., Shahriar , K., Rezai, B., & Rostami , J. (2011). Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system. Tunnelling and Underground Space Technology, 333-345.
Koopialipoor, M., Tootoonchi, H., Jahed Armaghani, D., & Tonnizam Mohamad, E. (2019). Application of deep neural networks in predicting the penetration rate of tunnel boring machine. Bulletin of Engineering Geology and the Environment. doi:10.1007/s10064-019-01538-7
Liu, Q., X. Huang, Q. Gong, L. Du, Y. Pan, & J. Liu. (2016). Application and development of hard rock TBM and its prospect in China. Tunnelling and Underground Space Technology, 33-46.
Medel-Morales, R., & Botello-Rionda, S. (2013). Design and Optimization of Tunnel Boring Machines by Simulating the Cutting Rock Process using the Discrete Element Method. Computacion y Sistemas, 329-339.
Mobarra, Y., Hajian, A., & Rahgozar, M. (2013). Application of Artificial Neural Networks to the Prediction of TBM Penetration Rate in TBM-driven Golab Water Transfer Tunnel. International Conference on Civil Engineering Architecture & Urban Sustainable Development. Tabriz.
Mohammadi, S., Torabi-Kaveh, M., & Bayati, M. (2014). Prediction of TBM penetration rate using intact and mass rock properties (case study: Zagros long tunnel, Iran). Arab J Geosci.
Moradi, M., & Farsangi, M. (2014). Application of the Risk Matrix Method for Geotechnical Risk Analysis and Prediction of the Advance Rate in Rock TBM Tunnelling. Rock Mech Rock Eng, 1951-1960.
Ozdemir, L., Miller, R., & Wang, F. (1978). Mechanical tunnel boring prediction and machine design. Colorado: Colorado School of Mines.
Ramezanzadeh, A. (2005). Performance analysis and development of new models for performance prediction of hard rock TBMs in rock mass. Lyon: Ph.D. Thesis.
Report, G. (2020). Geotechnical Report of Glass Tunnel. Developing of Water Sources of Iran.
Rostami, J. (1997). Development of a force estimation model for rock fragmentation with disc cutters through theorical modelling and physical measurment of crushed zone pressure. Colorado School of Mines, Colorado: Ph.D. Thesis.
Salimi, A., Singh, T., Moormann, C., & Jain, P. (2015). TBM Performance Prediction in Rock Tunneling Using Various Artificial Intelligence Algorithms. 11th Iranian and 2nd Regional Tunnelling Conference. Tehran.
Sanio, H. (1985). Prediction of the performance of disc cutters in anisotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 153-161.
Tarkoy, P. (1973). Predicting TBM penetration rates in selected rock types. 9th Canadian Rock Mechanics Symposium. Montreal.
Wang, X., Lu, H., Wei, X., Wei, G., Behbahani, S., & Iseley, T. (2020). Application of Artificial Neural Network in Tunnel Engineering: A Systematic Review. IEEE Access. doi:10.1109/ACCESS.2020.3004995
Yagiz, S. (2002). Development of rock mass features and toughness in the CSM model basic penetration for hard rock tunneling machine. Colorado School of Mines, Colorado: Ph.D Thesis.
Yagiz, S. (2008). Utilizing rock mass properties for predicting TBM performance in hard rock condition. Tunnelling and Underground Space Technology, 326-339.
Yavari, M., & Mahdevari, S. (2006, April). TBM Penetration Rate Prediction Using Neural Networks. Journal of The College of Engineering, pp. 115-121.
Zadeh, L. (1965). Fuzzy Sets. Information and Control, 338-353.