, 1-10.
Akbarzadeh, M. R., Jalali, S. E., & Talebinezad, A. R. (2021). Optimization of construction depth for subway considering the type of ground and support system characteristics (case study; Tabriz metro line 2) Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, M.Sc. Thesis.
Benardos, A., Sourouvali, N., & Mavrikos, A. (2021). Measuring and benchmarking the benefits of Athens metro extension using an ex-post cost benefit analysis. Tunnelling and Underground Space Technology, 111, 103859.
Caporaletti, P. (2005). Tunnelling in layered ground and its effects on pre-existing masonry structures Ph. D. thesis. University of Rome ‘‘La Sapienza’’. Italy.
Imensazan, C. (2015). Geological and Engineering Geological Report for the second line of the Tabriz subwa.
Koyama, Y. (2003). Present status and technology of shield tunneling method in Japan. Tunnelling and Underground Space Technology, 18(2-3), 145-159.
Liu, B., Wang, Y., Zhao, G., Yang, B., Wang, R., Huang, D., & Xiang, B. (2021). Intelligent Decision Method for Main Control Parameters of Tunnel Boring Machine based on Multi-Objective Optimization of Excavation Efficiency and Cost. arXiv preprint arXiv:2104.14975.
Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S. N., Nejati, H. R., Noori, K. M. G., Ibrahim, H. H., & Ali, H. F. H. (2021). Predicting construction time and cost of tunnels using Markov chain model considering opinions of experts. Tunnelling and Underground Space Technology, 116, 104109.
Mahmoodzadeh, A., & Zare, S. (2016). Probabilistic prediction of expected ground condition and construction time and costs in road tunnels. Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 734-745.
Mair, R., Taylor, R., & Bracegirdle, A. (1993). Subsurface settlement profiles above tunnels in clays. Geotechnique, 43(2), 315-320.
Migliazza, M., Chiorboli, M., & Giani, G. (2009). Comparison of analytical method, 3D finite element model with experimental subsidence measurements resulting from the extension of the Milan underground. Computers and Geotechnics, 36(1-2), 113-124.
Moavenzadeh, F., & Markow, M. J. (1976). Simulation model for tunnel construction costs. Journal of the Construction Division, 102(1), 51-66.
Möller, S. C. (2006). Tunnel induced settlements and structural forces in linings. Univ. Stuttgart, Inst. f. Geotechnik Stuttgart, Germany.
Nematollahi, M., & Dias, D. (2019). Three-dimensional numerical simulation of pile-twin tunnels interaction–Case of the Shiraz subway line. Tunnelling and Underground Space Technology, 86, 75-88.
New, B. M. (1991). Tunnelling induced ground movements: predicting their magnitude and effects. 4th Int. Conf. Ground Movements and Structures,
O'REILLY, M. P., & New, B. (1982). Settlements above tunnels in the United Kingdom-their magnitude and prediction (090048862X).
Paraskevopoulou, C., & Benardos, A. (2013). Assessing the construction cost of Greek transportation tunnel projects. Tunnelling and Underground Space Technology, 38, 497-505.
Peck, R. B. (1969). Deep excavations and tunneling in soft ground. Proc. 7th ICSMFE, 1969, 225-290.
Rostami, J., Sepehrmanesh, M., Gharahbagh, E. A., & Mojtabai, N. (2013). Planning level tunnel cost estimation based on statistical analysis of historical data. Tunnelling and Underground Space Technology, 33, 22-33.
Sharifzadeh, M., Khademi, J., & Torkamani, A. (2015). Mechanized Shield Tunneling_.