بررسی اثر اندرکنش ساختمان، خاک و تونل دایره‌ای کم عمق بر پاسخ لرزه‌ای ساختمان 20 طبقه SAC

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار: دانشکده فنی و مهندسی، دانشگاه مراغه

2 استادیار: دانشکده مهندسی عمران، دانشگاه علم و صنعت

3 دانشجوی کارشناسی ارشد: دانشکده فنی و مهندسی، دانشگاه مراغه

چکیده

ز دیدگاه ژئوتکنیـک لـرزه‌ای، تأثیر تونل‌هـای داخل شهری بر پاسخ لـرزه‌ای سطح زمین و محیط اطراف آشـکار شـده اسـت. در این مقاله با در نظر گرفتن اندرکنش سیستم ساختمان-خاک-تونل، اثر وجود تونل دایره‌ای کم عمق بر پاسخ لرزه‌ای ساختمان 20 طبقه معیار SAC مورد بررسی قرار می‌گیرد. سیستم اندرکنش ساختمان-خاک-تونل به صورت دو بعدی و با در نظر گرفتن رفتار غیرخطی مصالح خاک با استفاده از روش معادل خطی مدل شده است. از 8 رکورد زلزله جهت بررسی عملکرد لرزه‌ای این ساختمان استفاده شده است. در این مطالعه اثر فاصله افقی و قائم محور تونل دایره‌ای از مرکز پی، فرکانس تحریک، انعطاف‌پذیری تونل و همچنین نوع خاک ساختگاه بر پاسخ لرزه‌ای ساختمان مورد بررسی قرار گرفته است. نتایج نشان می‌دهد برای موج سینوسی، بیشترین تاثیر بزرگنمایی شتاب پای سازه در فاصله افقی 4 برابر شعاع تونل می‌باشد و با کاهش نسبت پریود بی‌بعد، تاثیر تونل بر بزرگنمایی شتاب بیشتر می‌شود که به دلیل عبور امواج با طول موج‌های کوتاه‌تر است. برای امواج لرزه‌ای، تغییرات جابجایی بام و شتاب پای سازه در حضور تونل، برای خاک نوع IV بیشتر از خاک نوع II و III می‌باشد. افزایش شتاب پای سازه در حضور تونل، حداکثر برابر 46 درصد و افزایش جابجایی بام، حداکثر برابر 54 درصد برای خاک نوع IV می‌باشد.

کلیدواژه‌ها


Abate, G., & Massimino, M. R. (2017a). Numerical modelling of the seismic response of a tunnel–soil–aboveground building system in Catania (Italy). Bulletin of Earthquake Engineering, 15(1), 469-491.
Abate, G., & Massimino, M. R. (2017b). Parametric analysis of the seismic response of coupled tunnel–soil–aboveground building systems by numerical modelling. Bulletin of Earthquake Engineering, 15(1), 443-467.
Alielahi, H., & Adampira, M. (2016a). Effect of twin-parallel tunnels on seismic ground response due to vertically in-plane waves. International Journal of Rock Mechanics and Mining Sciences, 85, 67-83.
Alielahi, H., & Adampira, M. (2016b). Seismic effects of two-dimensional subsurface cavity on the ground motion by BEM: Amplification patterns and engineering applications. International Journal of Civil Engineering, 14(4), 233-251.
Alielahi, H., & Adampira, M. (2016c). Site-specific response spectra for seismic motions in half-plane with shallow cavities. Soil Dynamics and Earthquake Engineering, 80, 163-167.
Alielahi, H., Adampira, M., & Asgari, M. (2017). Influence of double tunnels on seismic amplification pattern of ground surface using BEM. SHARIF: CIVIL ENINEERING, 33-2(3.2), 29-41.
Alielahi, H., Kamalian, M., & Adampira, M. (2015). Seismic ground amplification by unlined tunnels subjected to vertically propagating SV and P waves using BEM. Soil Dynamics and Earthquake Engineering, 71, 63-79.
Alielahi, H., Kamalian, M., & Adampira, M. (2016). A BEM investigation on the influence of underground cavities on the seismic response of canyons. Acta Geotechnica, 11(2), 391-413.
Alielahi, H., Kamalian, M., Asgari Marnani, J., Jafari, M. K., & Panji, M. (2013). Applying a time-domain boundary element method for study of seismic ground response in the vicinity of embedded cylindrical cavity. International Journal of Civil Engineering, 11(1), 45-54.
Alielahi, H., & Ramazani, M. S. (2016). surface seismic amplification pattern assessment in sites over underground box structures. Bulletin of earthquake science and engineering, 3(1), 55-71.
Baziar, M. H., Ghalandarzadeh, A., & Rabeti Moghadam, M. (2015). Tehran Subway Tunnel Effect on the Seismic Response of the Ground Surface with Linear Soil Behavior: An Experimental and Numerical Study. Earthquake Engineering.
Baziar, M. H., Rabeti Moghadam, M., Kim, D. S., & Choo, Y. W. (2014). Effect of underground tunnel on the ground surface acceleration. Tunnelling and Underground Space Technology, 44, 10-22.
Baziar, M. H., Rabeti Moghadam, M., Kim, D. S., & Choo, Y. W. (2016). effect of underground structure lining flexibility on acceleration response at ground surface. SHARIF: CIVIL ENINEERING.
Beshart, V., & Majidzamani, S. (2017). Seismic Responce of ground Surface Tehran Subway. Earthquake Engineering.
Fatahi, B., & Tabatabaiefar, S. H. R. (2014a). Effects of soil plasticity on seismic performance of mid-rise building frames resting on soft soils. Advances in Structural Engineering, 17(10), 1387-1402.
Fatahi, B., & Tabatabaiefar, S. H. R. (2014b). Fully nonlinear versus equivalent linear computation method for seismic analysis of midrise buildings on soft soils. International Journal of Geomechanics, 14(4).
Fatahi, B., Tabatabaiefar, S. H. R., & Samali, B. (2014). Soil-structure interaction vs Site effect for seismic design of tall buildings on soft soil. Geomechanics and Engineering, 6(3), 293-320.
Guo, J., Chen, J., & Bobet, A. (2013). Influence of a subway station on the inter-story drift ratio of adjacent surface structures. Tunnelling and Underground Space Technology, 35, 8-19.
Guobo, W., mingzhi, y., Yu, M., Jan, w., & Yaxi, W. (2018). Experimental study on seismic response of underground tunnel-soil-surface structure interaction system. Tunnelling and Underground Space Technology, 76, 145-159.
Hassani, N., Bararnia, M., & Ghodrati Amiri, G. (2018). Effect of soil-structure interaction on inelastic displacement ratios of degrading structures. Soil Dynamics and Earthquake Engineering, 104, 75-87.
Hokmabadi, A. S., Fatahi, B., & Samali, B. (2015). Physical Modeling of Seismic Soil-Pile-Structure Interaction for Buildings on Soft Soils. International Journal of Geomechanics, 15(2), 04014046.
Kausel, E. (2010). Early history of soil-structure interaction. Soil Dynamics and Earthquake Engineering, 30(9), 822-832.
Khalajzadeh, M. H., & Azadi, M. (2019). The Effects of Tunnel Excavation on the Seismic Response of Ground Surface Using Finite Difference Method. Amirkabir Journal of Civil Engineering, 51(1), 99-108.
Kuhlemeyer, R. L., & Lysmer, J. (1973). Finite element method accuracy for wave propagation problems Journal of the Soil Mechanics and Foundations Division, 99(5), 421-427.
Mylonakis, G., & Gazetas, G. (2000). Seismic soil-structure interaction: Beneficial or detrimental? Journal of Earthquake Engineering, 4(3), 277-301.
Naderpour, h., Vosoughifar, h. R., & Ghobakhloo, e. (2016). Evaluation of effective parameters on wave diffraction of far-fault ground motions using artificial neural networks. SHARIF: CIVIL ENINEERING, 32-2(1.1), -.
Naseem, A., Schotte, K., De Pauw, B., & De Backer, H. (2019). Ground Settlements due to Construction of Triplet Tunnels with Different Construction Arrangements. Advances in Civil Engineering, 2019.
Ohtori, Y., Christenson, R. E., Spencer Jr, B. F., & Dyke, S. J. (2004). Benchmark control problems for seismically excited nonlinear buildings. Journal of Engineering Mechanics, 130(4), 366-385.
Panji, m., & fakhravar, a. (2017). Amplification pattern of seismic ground surface in the presence of underground horseshoe tunnel subjected to incident sh-wave. BULLETIN OF EARTHQUAKE SCIENCE AND ENGINEERING, 4(2 ), 49-66.
Priestley, N. M. J. (1993). Myths and fallacies in earthquake engineering-conflicts between design and reality. Bulletin of the New Zealand National Society for Earthquake Engineering, 26(3), 329-341.
Rabeti Moghadam, M., & Baziar, M. H. (2016). Seismic ground motion amplification pattern induced by a subway tunnel: Shaking table testing and numerical simulation. Soil Dynamics and Earthquake Engineering, 83, 81-97.
Rayhani, M. H. T., & El Naggar, M. H. (2008). Numerical modeling of seismic response of rigid Foundation on soft soil. International Journal of Geomechanics, 8(6), 336-346.
S. Kolbadi, S. M., & Rasti Ardakani, R. (2017). Evaluation of Soil-Structure Interaction Parameters in Static and Dynamic Response of the Retaining. Amirkabir J. Civil Eng, 49(2), 323-334
Sarlak, A., Saeedmonir, H., & Gheyratmand, C. (2017). Numerical and experimental study of soil-structure interaction in structures resting on loose soil using laminar shear box. International Journal of Engineering, Transactions B: Applications, 30(11), 1654-1663.
Tabatabaiefar, H. R., & Massumi, A. (2010). A simplified method to determine seismic responses of reinforced concrete moment resisting building frames under influence of soil-structure interaction. Soil Dynamics and Earthquake Engineering, 30(11), 1259-1267.
Tabatabaiefar, S. H. R., Fatahi, B., & Samali, B. (2016). Numerical and Experimental Investigations on Seismic Response of Building Frames under Influence of Soil-Structure Interaction. Advances in Structural Engineering, 17(1), 109-130.
Trifunac, M. D. (2016). Site conditions and earthquake ground motion – A review. Soil Dynamics and Earthquake Engineering, 90, 88-100.
Turan, A., Hinchberger, S. D., & El Naggar, M. H. (2013). Seismic soil–structure interaction in buildings on stiff clay with embedded basement stories. Canadian Geotechnical Journal, 50(8), 858-873.
Wang, H. F., Lou, M. L., Chen, X., & Zhai, Y. M. (2013). Structure-soil-structure interaction between underground structure and ground structure. Soil Dynamics and Earthquake Engineering, 54, 31-38.