تحلیل لرزه ‏ای سطح زمین در حضور تونل پوشش‏ دار زیرزمینی در برابر امواج مهاجم قائم P/SV و SH: یک مطالعه‌ی مقایسه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار؛ گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد زنجان

2 دانشجوی دکتری تخصصی؛ گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد زنجان

3 دانشجوی کارشناسی ارشد؛ گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد زنجان

چکیده

در این مقاله به تعیین پاسخ لرزه‏ای سطح زمین در برابر امواج مهاجم قائم P/SV و SH در حضور یک تونل زیرزمینی پوشش‏دار دایره‏ای پرداخته شده است. در این راستا از روش اجزای محدود سه‏بعدی در قالب نرم‏افزار عددی آباکوس برای مدل‌سازی بهره گرفته شده ‏است. ضمن ارائه‌ی مختصر مبانی نظری حاکم بر روش اجزای محدود و حل یک مثال صحّت‏سنجی، با در نظر گرفتن برخی پارامترهای کلیدی از قبیل عمق تونل و نسبت امپدانس پوشش نگهدارنده با محیط پیرامون، پاسخ سطح زمین حساسیّت‌سنجی شده است. در ادامه، یک مطالعه‌ی مقایسه‏ای بین نتایج سه‏بعدی حاصل و پاسخ‏های دوبعدی اجزای مرزی نیم‏فضا انجام شده است. نتایج نشان داد در نسبت‌ عمق 5 و 8 به ترتیب برای امواج P/SV و SH اثر حضور تونل از بین رفته و پاسخ به سمت حرکت میدان آزاد سطح زمین همگرا شده است. همچنین، در حالت هجوم امواج درون‌صفحه‌ی P/SV افزایش هر واحد نسبت امپدانس حداقل به میزان 5% در کاهش پاسخ افقی سطح بالای تونل مؤثر بوده، امّا در هجوم امواج برون صفحه SH، نتایج معکوس به چشم می‌خورد. دست‌آوردهای حاصل می‏تواند در تکمیل و تدقیق آیین‏نامه‏های لرزه‏ای موجود پیرامون موضوع ریز‌پهنه‏بندی ساختگاه در حضور بازشدگی زیر‏سطحی مثمر ثمر باشد.

کلیدواژه‌ها


Balendra, T., Thambiratnam, D.P., Koh, C.G., Lee, S.L. (1984). Dynamic response of twin circular tunnels due to incident SH-waves. Earthq Eng Struct Dyn, 12(2), 181-201.
Ba Z., Yin X., (2016). Wave scattering of complex local site in a layered half-space by using a multidomain IBEM: incident plane SH-waves, Geophys J Int, 205, 1382-1405.
Chin, Y.F., Rajapakse, R.K.N.D., Shah, A.H., Datta, S.K. (1987). Dynamics of buried pipes in back-filled trench. Soil Dyn Earthq Eng, 6(3), 158-163.
Chen, J.T., Lee, J.W., Wu, C.F., Chen, I.L. (2011). SH-wave diffraction by a semi-circular hill revisited: a null-field boundary integral equation method using degenerate kernels. Soil Dyn Earthq Eng, 31, 729-736.
Dominguez, J., Gallego, R., (1991). The time domain boundary element method for elastodynamic problems. Math Comp Model, 15(3-5), 119-129.
Davis, C.A., Lee, V.W., Bardet, J.P. (2001). Transverse response of underground cavities and pipes to incident SV-waves. Earthq Eng Struct Dyn. 30(3), 383-410.
Esmaeili, M., Vahdani, S., Noorzad, A. (2006). Dynamic response of lined tunnel to plane harmonic waves. Tunnel Undergr Space Technol, 21, 511-519.
Gizzi, F.T., Masini, N. (2006). Historical damage pattern and differential seismic effects in a town with ground cavities: A case study from Southern Italy. Eng Geolog, 88(1-2), 41-58.
Huang, M., Pan, B.Y. (2012). Dynamic stress concentration of underground lined cavities in different distance under incident plane SV-wave. Adv Mater Res, 446-449, 2317-2320.
Huang, J.Q., Du, X.L., Jin, L., Zhao, M. (2016). Impact of incident angles of P-waves on the dynamic response of long lined tunnels. Earthq Eng Struct Dyn, 45(15), 2435-2454.
Jiang, l., Chen, J. (2010). Seismic response of underground utility tunnels: shaking table testing and FEM analysis. Earthq Eng Eng Vib, 9(4), 555-567.
Kuhlemeyer R.L. and Lysmer J. (1973). Finite element method accuracy for wave propagation problems. J Soil Mech Found Div, 99(5), 421-427.
Kamalian, M., Gatmiri, B., Sohrabi-Bidar, A., (2003). On time-domain two-dimensional site response analysis of topographic structures by BEM. J Seism Earthq Eng, 5(2), 35-45.
Kamalian, M., Jafari, M.K., Sohrabi-Bidar, A., Razmkhah, A., Gatmiri, B. (2006). Time-domain two-dimensional site response analysis of non-homogeneous topographic structures by a hybrid FE/BE method. Soil Dyn Earthq Eng, 26(8), 753-765.
Kazemeini, M.J., Haghshenas, E., Kamalian, M. (2015). Experimental evaluation of seismic site response over and nearby underground cavities (Study of subway tunnel in city of Karaj, Iran). Iran J Sci Tech-Transact Civ Eng, 39, 319-322.
Lysmer, J., Drake, L.A. (1972). A finite element method for seismology, Meth Comp Phys. Ed Bolt BA, Academic Press, New York. 11, 181-216.
Lee, V.W., Trifuanc, M.D., (1979). Response of tunnels to incident SH-waves. J Eng Mech Div, ASCE, 105(4), 643-659.
Lee, V.W., Karl, J. (1992). Diffraction of SV-waves by underground, circular, cylindrical cavities. Soil Dyn Earthq Eng, 11(8), 445-456.
Luco, J.E., de Barros, F.C.P., (1994). Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half‐space. Earthq Eng Struct Dyn, 23(3), 321-340.
Lee, V.W., Manoogian, M.E., (1995). Surface motion above an arbitrary shape underground cavity for incident SH-waves. J Europ Earthq Eng, 7(1), 3-11.
Liang, J., Zhang, H., Lee, V.W. (2003). A series solution for surface motion amplification due to underground twin tunnels: incident SV-waves. Earthq Eng Eng Vib, 2(2), 289-298.
Liang, J.W., Lee, V.W., Zhang, H. (2004). A series solution for surface motion amplification due to underground group cavities: Incident P-waves. Acta Seismol Sinica, 17(3), 296-307.
Liu, D.K. Lin, H. (2004). Scattering of SH-waves by an interacting interface linear crack and a circular cavity near bimaterial interface. Acta Mech Sinica, 20(3), 317-326.
Liao, W.I., Yeh, C.S., Teng, T.J. (2008). Scattering of elastic waves by a buried tunnel under obliquely incident waves using T matrix. J Mech, 24(4), 405-418.
Liang, J., Luo, H., Lee, V.W., (2010). Diffraction of plane SH-waves by a semi-circular cavity in half-space. Earthq Sci, 23(1), 5-12.
Li, Y.S., Li, T.B., Zhang, X. (2012). Response of shallow-buried circular lining tunnel to incident P-wave. Appl Mech Mater, 160, 331-336.
Liu, Q., Zhao, M., Wang, L. (2013). Scattering of plane P, SV or Rayleigh-waves by a shallow lined tunnel in an elastic half-space. Soil Dyn Earthq Eng, 49, 52-63.
Liu, Z., Liu, L. (2015). An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space. Earthq Sci, 28(1), 71-86.
Liu, Q., Zhang, Ch., Todorovska, M.I. (2016). Scattering of SH-waves by a shallow rectangular cavity in an elastic half space. Soil dyn Earthq Eng, 90, 147-157.
Liu, Z., Wang, Y., Liang, J. (2016). Dynamic interaction of twin vertically overlapping lined tunnels in an elastic half-space subjected to incident plane waves. Earthq Sci, 29(3), 185-201.
Lee, Y.T., Chen, J.T., Kuo S.R. (2019). Semi-analytical approach for torsion problems of a circular bar containing multiple holes/cracks. Eng Fract Mech, 219. 106547.
Mansur, W.J., (1983). A time-stepping technique to solve wave propagation problems using the boundary element method [Ph.D. dissertation]. University of Southampton.
Moore, I.D., Guan, F. (1996). Three-dimensional dynamic response of lined tunnels due to incident seismic waves. Earthq Eng Struct Dyn, 25(4), 357-369.
Manoogian, M.E. (2000). Scattering and diffraction of SH-waves above an arbitrarily shaped tunnel. ISET J Earthq Technol, 37(1-3), 11-26.
Nohegoo‑Shahvari, A., Kamalian, M., Panji, M. (2018). Two-dimensional dynamic analysis of alluvial valleys subjected to vertically propagating incident SH-waves. Int J Civ Eng, 17, 823-839.
Nohegoo‑Shahvari, A., Kamalian, M., Panji, M. (2019). A hybrid time-domain half-plane FE/BE approach for SH-wave scattering of alluvial sites. Eng Analy BE, 105, 194-206.
Panji, M., Kamalian, M., Asgari-Marnani, J., Jafari, M.K., (2013). Transient analysis of wave propagation problems by half-plane BEM. Geophys J Int. 194, 1849-1865.
Parvanova, S.L., Dineva, P.S., Manolis, G.D., Wuttke, F. (2014). Seismic response of lined tunnels in the half-plane with surface topography. Bull Earthq Eng, 12(2), 981-1005.
Panji, M., Kamalian, M., Asgari-Marnani, J., Jafari, M.K. (2014). Antiplane seismic response from semi-sine shaped valley above embedded truncated circular cavity: a time-domain half-plane BEM. Int J of Civ Eng, 12(2), 194-206.
Panji, M., Ansari, B., (2017). Transient SH-wave scattering by the lined tunnels embedded in an elastic half-plane. Eng Analy BE, 84, 220-230.
Panji, M., Mojtabazadeh-Hasanlouei, S., (2018). Time-history responses on the surface by regularly distributed enormous embedded cavities: Incident SH-waves. Earthq Sci, 31, 1-17.
Panji M., Mojtabazadeh-Hasanlouei S., (2019). Seismic amplification pattern of the ground surface in presence of twin unlined circular tunnels subjected to SH-waves [In Persian]. J Transp Infrast Eng, 5(3), 111-134.
Panji, M., Mojtabazadeh-Hasanlouei, S., Yasemi, F., (2020). A half-plane time-domain BEM for SH-wave scattering by a subsurface inclusion. Comp Geosci, 134, 104342.
Panji, M., Mojtabazadeh-Hasanlouei, S., (2020). Transient response of irregular surface by periodically distributed semi-sine shaped valleys: Incident SH-waves. J Earthq Tsu, 14(1), 2050005.
Ricker, N. (1953). The form and laws of propagation of seismic wavelet. Geophys, 18(1), 10-40.
Rabeti-Moghadam, M., Baziar, M.H. (2016). Seismic ground motion amplification pattern induced by a subway tunnel: Shaking table testing and numerical simulation. Soil Dyn Earthq Eng, 83, 81-97.
Smith, W.D. (1975). The application of finite element analysis to body wave propagation problems. Geophys J Royal Astronom Soc, 42(2), 747-768.
Smerzini, C., Aviles, J., Paolucci, R., Sanchez-Sesma, F.J. (2009). Effect of underground cavities on surface earthquake ground motion under SH-wave propagation. Earthq Eng Struct Dyn, 38, 12, 1441-1460.
Tsaur, D.H., Chang, K.H. (2012). Multiple scattering of SH-waves by an embedded truncated circular cavity, J Marine Sci Tech, 20(1), 73-81.
Verrucci, L., Lanzo, G., Pagliaroli, A., Sanò, T. (2012). Effects of cavities on seismic ground response. In: proceeding second international conference on performance-based design in earthquake geotechnical engineering.
Wong, K.C., Shah, A.H., Datta, S.K. (1985). Dynamic stresses and displacements in a buried tunnel. J Eng Mech, 111(2), 218-234.
Wang, L., Xu, Y., Xia, J., Luo, Y. (2015). Effect of near-surface topography on high-frequency Rayleigh-wave propagation. J Appl Geophys, 116, 93-103.
Xu, H., Li, T., Xu, J., Wang, Y. (2014). Dynamic response of underground circular lining tunnels subjected to incident P-waves. Math Probl Eng, 2014(4), 1-11.
Yeh, C.S., Teng, T.J., Shyu, W.S., Tsai, I.C. (2002). A hybrid method for analyzing the dynamic responses of cavities or shells buried in an elastic half-plane. J Mech, 18(2), 75-87.
Yu, C., W. Dravinski, M. (2009). Scattering of plane harmonic SH-wave by a completely embedded corrugated scatterer. Int J Numer Meth Eng, 78, 196-214.
Yiouta-Mitra, P., Kouretzis, G., Bouckovalas, G., Sofianos, A. (2007). Effect of underground structures in earthquake resistant design of surface structures. In: Proceedings of the dynamic response and soil properties, New Peaks in Geotechnics.
Zhou, H., Chen, X.F. (2006). A new approach to simulate scattering of SH-waves by an irregular topography. Geophys J Int. 164, 449-459.
Zhang, Y., Zhou, C., Liu, Y. (2011). Dynamic stresses concentrations of SH-wave by circular tunnel with lining. Adv Mater Res, 323, 18-22