اثر تونلسازی بر پاسخ تنش-تغییرشکل شمعهای مایل موجود

نوع مقاله : یادداشت فنی

نویسندگان

1 ,دپارتمان ژئوتکنیک, دانشکده فنی و مهندسی, دانشگاه بین المللی امام خمینی, قزوین, ایران

2 استادیار دانشگاه ازاد واحد زنجان

3 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین

چکیده

شمعهای مایل تا 45 درجه انحراف در برخی پروژه های عظیم مانند پلها، سکوهای نفتی، سیلوها، نیروگاه ها، پارکینگهای طبقاتی و حتی برخی ساختمانهای متحدث بر خاکهای ضعیف استفاده می شوند. با این حال اثرات تونلسازی بر مقاومت نوک شمع، کمانش و نشست سطح زمین متفاوت است. این تحقیق قصد دارد رفتار تنش-تغییرمکان سطح زمین را طی حفاری تونل در مجاورت شمعهای مایل مطالعه کند. روش المان محدود بمنظور بررسی اثر موقعیت و درجه انحراف شمعها بر جابجاییهای القایی در سطح زمین استفاده شده است. پس از صحت سنجی و ارزیابی راندمان نرم افزار المان محدود، توسعه مدل با مقایسه درجه انحراف شمعها (10، 20 و 30 درجه) و سه طول مختلف آنها (15، 21 و 27 متر) انجام شده است. نتایج نشان داد در تمام طولها و درجات انحراف شمعها، بیشینه نشست المان شمع بیشتر از بیشینه نشست سطح زمین و این بیشتر از بیشینه نشست نوک شمع است.

کلیدواژه‌ها


Bezuijen, A., & Van der Schrier, J. S. (1994). The influence of a bored tunnel on pile foundations. In: Proceedings on Centrifuge (pp. 681–686). Singapore.
Boonyarak, T., & Ng, C. (2012). Tunneling effects on pile group response in Bangkok. GeoCongress (pp. 3119-3128).
Chen, L. T., Poulos, H. G., & Lohanathan, N. (1999). Pile response caused by tunneling. Journal of Geotechnical and Geoenvironmental Engineering (pp. 207–215).
Cheng, C. Y., Dasari, G. R., Chow, Y. K., & Leung, C. F. (2007). Finite element analysis of tunnel–soil–pile interaction using displacement controlled model. Tunnelingand Underground Space Technology (pp. 450–466).
Coutts, D. R, & Wang, J. (2000). Monitoring of reinforced concrete piles under horizontal and vertical loads due to tunneling. In:Tunnels and UndergroundStructures (pp. 541–546). Singapore.
Forth, R. A., & Thorley, C. B. B. (1996). Hong Kong Island Line – predictions and performance. In: Proceedings of International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground (pp. 677–682). London, Balkema.
Heama, N., Jongpradist, P., Lueprasert, P., & Suwansawat, S. (2017). Investigation on tunnel responses due to adjacent loaded pile by 3D finite element analyses. International Journal of GEOMATE (pp. 63-70).
Hergarden, H. J. A. M., Van der Poel, J. T., & Van der Schrier, J. S. (1996). Ground movement due to tunneling: Influence on pile foundations. In: Proceedings of International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground (pp. 519–524). London, Balkema.
Jacobsz, S. W., Standing, J. R., Mair, R. J., Hagiwara, T., & Sugiyama, T. (2004). Centrifuge modeling of tunneling near driven piles. Soils and Foundations (pp. 49–56).
Jacobsz, S. W., Standing, J. R., Mair, R. J., Soga, K., Hagiwara, T., & Sugiyama, T. (2001). Tunneling effect on driven piles. In: Proceedings of the International Conference on Response of buildings to excavation-induced ground movements. (pp. 1–15). Imperial College, CIRIA, London.
Jongpradist, P., Kaewsri, T., Sawatparnich, A., Suwansawat, S., Youwai, S., Kongkitkul, W., & Sunitsakul, J. (2013). Development of tunneling influence zones for adjacent pile foundations by numerical analyses. Tunneling and Underground Space Technology (pp. 96–109).
Kaalberg, F. J., Lengkeek, H. J., & Teunissen, E. A. H. (1999). Evaluatie van de meetresulaten van het proefpalenprojek ter plaatse van de tweede Heinenoordtunnel (in Dutch). Adviedbureau Noord/Zuidlijn Report No. R981382, Amsterdam.
Kitiyodom, P., Matsumoto, T., & Kawaguchi, K. (2005). A simplified analysis method for piled raft foundations subjected to ground movements induced by tunneling. International Journal for Numerical and Analytical Methods in Geomechanics (pp. 1485–1507).
Lee, C. J. (2012a). Three-dimensional numerical analyses of the response of a single pile and pile groups to tunneling in weak weathered rock. Tunneling and Underground Space Technology (pp. 132-142).
Lee, C. j. (2012b). Numerical analysis of the interface shear transfer mechanism of a single pile to tunneling in weathered residual soil. Computers and Geotechnics (pp. 193-203).
Lee, C. J., & Chiang, K. H. (2007). Response of single piles to tunneling-induced soil movements in sand ground. Canadian Geotechnical Journal (pp. 1224–1241).
Lee, C. J., & Jacobz, S. W. (2006). The influence of tunneling on adjacent piled foundations. Tunneling and Underground Space Technology (Vol. 21 (3-4), 430).
Lee, G. T. K., & Ng, C. W. W. (2005). Effects of advancing open face tunneling on an existing loaded pile. Journal of Geotechnical and Geoenvironmental Engineering (pp. 193-201).
Lee, Y. J., & Basset, R. H. (2007). Influence zones for 2D pile-soil-tunneling interaction based on model test and numerical analysis. Tunneling and Underground Space Technology (pp. 325–342).
Loganathan, N., Poulos, H. G., & Steward, D. P. (2000). Centrifuge model testing of tunneling induced ground and pile deformations. Geotechnique (pp. 315– 332).
Loganathan, N., Poulos, H. G., & Xu, K. J. (2001). Ground and pile group response due to tunneling. Soils and Foundations (pp. 57–67).
Lueprasert, P., Jongpradist, P., & Suwansawat, S. (2017). Numerical investigation of tunnel deformation due to adjacent loaded pile and pile-soil-tunnel interaction. Tunnelling and Underground Space Technology (pp. 166–181).
Mair, R. J., Taylor, R. N., & Bracegirdle, A. (1993). Subsurface settlement profiles above tunnels in clays. Géotechnique (pp. 315–320).
Morton, J. D, & King, K. H. (1979). Effects of tunneling on the bearing capacity and settlement of piled foundations. In:Tunnelling.
Mroueh, M., & Shahrour, I. (1999). Three-dimensional analysis of the interaction between tunneling and pile foundations. In: Proceedings of the 7th International Conference on Numerical Models in Geomechanics – NUMOG VII (pp. 397–402). Graz, Balkema.
Mroueh, M., & Shahrour, I. (2002). Three-dimensional finite element analysis of the interaction between tunneling and pile foundations. International Journal for Numerical and Analytical Methods in Geomechanics (pp. 217–230).
Naqvi, M. W., & Farooqi, M. A. (2018). Effect of piled structures on the tunnel stability for different pile-tunnel configurations. In: ISGTI , Delhi, India.
Pinto, F., & Whittle, A. J. (2014). Ground Movements due to Shallow Tunnels in Soft Ground. J. Geotech. Geoenviron. Eng. (pp. 1-17).
Selemetas, D., Standing, J. R., & Mair, R. J. (2005). The response of full-scale piles to tunneling. In: Geotechnical Aspects of underground Construction in Soft Ground – The proceedings of the 5th International Conference of TC28 of the ISSMGE (pp. 763–769). Netherlands.
Vermeer, P. A., & Bonnier, P. G. (1991). Pile settlements due to tunneling. In: Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering (pp. 869–872). Florence, Balkema.
Xu, K. J. & Poulos, H. G. (2001). 3-D elastic analysis of vertical piles subjected to ‘‘passive’’ loadings. Computers and Geotechnics (pp. 349–375).
Yang, M., Sun, Q., Lee, W. C., & Ma, K. (2011). Three dimensional finite element analysis on effects of tunnel construction on nearby pile foundation. J. Cent. South Univ. Technol. (pp. 909-916).