
Use of Assembled Functions Theory for Computing Dynamic Response of a Tunnel: pp.83-95 

 

* Kermanshah; Razi University; Department of Civil Engineering; Email: h_r_ashrafi@yahoo.com 
 

 

 
Use of Assembled Functions Theory for Computing Dynamic Response 

of a Tunnel  

 
P. Beiranvand1, A. Bayat1, H. R. Ashrafi2*, F. Omidinasab3 M. Gohari4 

1- PhD Candidate, Department of Civil Engineering, Razi University, Kermanshah, Iran 

 2- Assistant Professor, Department of Civil Engineering, Razi University, Kermanshah, Iran 

3- Assistant Professor, Department of Civil Engineering, Lorestan University, Khorramabad, Iran 

4- MSc, Department of Civil Engineering, Islamic Azad University, Tabriz Branch, Iran 

 
Received: 05 Jun 2018; Accepted: 15 Jul 2018 

DOI: 10.22044/tuse.2018.6595.1333 

 

Keywords  Extended Abstract 
An analytical solution for the evaluation of dynamic response of 

a tunnel in infinite isotropic elastic porous media is presented. 

Tunnel is considered as a circular cavity. Two groups of complex 

functions for solid skeleton and pore fluid in a two-dimensional 

(2D) complex plane are introduced in order to solve the Biot equations. Stress, displacement and pore 

pressure fields induced by incident and scattered waves in the medium and especially in the vicinity of the 

cavity are evaluated in this complex plane. The validation of the proposed solution is shown by various 

numerical examples. A parametric study including the effects of fluid compressibility changes, shear 

modulus and permeability variations, several wave numbers and wave types (fast, slow and shear waves) 

is performed. 
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1. Introduction 

Scattering of waves by a cavity in an isotropic 

elastic porous medium is of significant interest in 

geomechanical and engineering problems such as 

underground structure design (tunnels and piles). 

For a linear elastic solid (non-porous), exact 

solutions for simple geometry are well known 

(Pao et al., 1973; Erigen and Suhubi, 1964). Wave 

propagation and scattering in porous media can be 

described by the theory given by Biot (1956). 

Gatmiri (1992) and Jeng (1997), among others, 

have proposed the analytical solutions for these 

equations in special cases (harmonic wave loading 

in quasi static condition). Gatmiri (1990) has 

proposed a finite element solution for the same 

case in a general geometry and loading. For the 

dynamic case, Degrande and De Roeck (1993), 

have studied the problem by using the finite 

element method and Keynia (1992), and 

Dominguez (1992) by using the boundary element 

method. While the wave scattering by a cavity in 

porous media has been of great interest in 

different fields but not so many solutions are 

available. Ziemmerman and Stern (1993) 

extended the previous methods for the solid media 

to the porous media. Mei et al. (1984) have 

studied the scattering problem by using a 

boundary layer approximation method. 

This paper presents an analytical solution for 

the scattering of harmonic waves in infinite 

isotropic porous medium based on complex 

function theory under assumption of plane strain.  

The complex functions in elasto-static problems 

were used by Muskhelishvili (1963). Nowinski 

(1982) has proposed a solution for static stress 

concentration around a hole subjected to uniaxial 

tension by the complex function approach. This 

method has been used for the evaluation of wave 

scattering by a cavity in infinite elastic solid by 

Liu et al. (1982).Degrande et al. (2017).have 

proposed a numerical model for ground-borne 

vibrations from underground railway traffic based 

on a periodic finite element–boundary element 

formulation. Alielahi et al. (2016) have also 

proposed a BEM investigation on the influence of 
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underground cavities on the seismic response of 

canyons. 

In this paper, an extension of complex 

functions application for the wave scattering is 

presented for the first time. In this approach, two 

groups of potential functions, ( s , s and f ,
f ) are introduced. The governing equations are 

transformed in the complex plane. By solving an 

eigenvalue problem, the relation between 

potential functions and is determined, while the 

relation between functions, s , f    is found 

directly. In the complex plane, the solution of the 

resulting partial differential equations has been 

presented in series of the Hankel functions 

(complex sum of the Bessel functions) with 

unknown coefficients. It is obvious that the 

Hankel functions satisfy the radiation conditions 

in a dynamic problem in a simple and direct 

manner. By applying appropriate boundary 

conditions, a set of algebraic equations gives the 

unknown coefficients.  

In order to validate the proposed solution, 

some comparisons are shown. Stress, pore 

pressure and displacement fields in vicinity of a 

tunnel in an infinite, isotropic and elastic porous 

medium subjected to P and SV harmonic waves 

are presented. The effects of the variation of 

important parameters such as the shear modulus, 

the permeability of the soil and the wave number 

are studied.  

 

2. Governing Equations 

For an isothermal fully saturated porous medium, 

two field variables related to the solid skeleton 

and to the fluid phase should be defined: the 

displacement of the solid skeleton, ui and the 

average relative displacement of the fluid with 

respect to the solid skeleton wi, which is measured 

in terms of volume of fluid per unit total cross 

section area of the bulk medium. Considering the 

displacement of the fluid as vi, one can write, wi = 

n (vi - ui) where n is the porosity of the soil 

medium. The equilibrium equation and the 

modified Darcy equation of the saturated porous 

media can be written as: 
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f

ififi,

ifiij,ij

w
k

1
 w

n

ρ
uρbρp

 wρuρρbσ









                   (1) 

where ij  is total stress tensor component, 

ib  and if b  are the body forces and iu , iv  are 

the displacement vector components of solid 

skeleton and pore fluid respectively. n  is the 

porosity of the soil, P  is the pore fluid pressure 

and k  is the permeability of the soil. 

    fs nρρn1ρ  in which  , f  and s  are 

the mass density of mixture, pore fluid and solid 

skeleton respectively. The dots (.) denote the 

derivation respect to the time (
t


). The 

poroelastic constitutive equations can be written 

in the plane strain condition can be written as: 
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where ijε  is the strain tensor component,   

and G  are the Lamé elastic coefficients. e is the 

volumetric change in the solid skeleton and   is 

the volume of pore fluid going out from a unit 

volume of bulk material.   is the Biot coefficient, 

Q  is the Biot modulus and ij  is the Kronecker 

delta. From (1) and (2), the equilibrium equations 

in the absence of body forces in terms of 

displacement, are derived as: 
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(3) 

 

3. Potential Functions 

In the two-dimensional (2D) case, the potential 

functions   (for P wave) and   (for SV wave) 

are defined as follows ( s , s  for solid skeleton 

and f , f  for pore fluid): 
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where xu , yu  and xw , yw  are the in plane 

components of the vectors  and  

respectively. Therefore, equation (3) in the 

iu iw
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harmonic case (
tie  ,

tie  ) is 

converted to the two groups of equations: 
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where 2  is the 2D Laplace operator, 
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  and   is the frequency of the 

waves. 

 

 

4. Complex Functions 

The complex variables are introduced as: 
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Using relations: 
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The Laplace operator in the complex plane is 

obtained as: 
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Therefore, equations (5) and (6) are written 

as: 
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The following potential functions can be 

considered: 
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where  rH )1(
n   is the Hankel function of 

first kind and order n: 

 

     riYrJrH nnn  )1( ,                                (14) 

 

in which  rJn   and  rYn   are the Bessel 

functions of first and second kind respectively and 

of order n.  
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This type of the Hankel function satisfies the 

radiation boundary condition that states the 

waves, which travel to infinity, should not return 

(Sommerfield condition). 
s
na ,

s
nb , 

f
na , 

f
nb  are the 

unknown coefficients. Using the following 

relations: 
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Equation (11) can be converted to an 

eigenvalue problem as: 
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in which the coefficients ija  are: 
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For this eigenvalue problem, determinant of 

the coefficients matrix should be equal to zero, 

therefore two quantities for   are computed, 1  

for 1P  (fast dilatational wave) and 2  for 2P  

(slow dilatational wave). Knowing these 

parameters, the relation between potential 

functions of the solid skeleton and pore fluid for 

P wave is derived: 
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From equation (12), the relation between the 

potential functions of the solid skeleton and pore 

fluid for SV wave can be derived directly: 
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Finally, the complete solution can be found: 
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The unknown coefficients nX , nY , nZ  are 

calculated from boundary conditions for the 

problem. Thus, displacements, stresses and pore 

pressure can be derived from the known potential 

functions, and then, the boundary value problem 

can be solved. 

 

5. Displacements, Stresses and Pore 

Pressure 

Using equation (4), the displacement components 

in the complex plane can be evaluated from: 
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where ru  and u  are the radial and 

tangential components of the displacement vector 

respectively. To derive displacements in terms of 

the Hankel functions, equations (15) and (16) are 

used; therefore, equation (23) can be written as: 
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For stresses, the following relations, which 

are derived from the first part of equation (2), can 

be used: 
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where r ,  ,  r  are the radial, hoop and 

shear components of the stress tensor, 

respectively. Combination of the two parts of 

equation (25) yields:  
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 The pore pressure can be evaluated by using 

the second part of equation (2) as follows: 

 
fs QQp  22                               (27) 

 

Finally the pore pressure and stresses are 

written in terms of the Hankel functions, as 

follows: 

(28) 
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6. Boundary value problem 

Let us consider a circular empty cavity with a 

radius “a”, as in the case of drained tunnel, in an 
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infinite porous medium, which is subjected to a 

harmonic incident wave 
in  or 

in . 

The pressure on the cavity surface is constant 

and may be set to zero. The stresses on this surface 

can be set to zero as well, therefore the following 

boundary conditions should be satisfied at the 

cavity surface: 
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All the wave variables are the sum of 

incident and scattering components; therefore the 

potential functions can be written as: 
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where 
in  and 

in  are the incident, and 

also, 
sc  and 

sc  are the scattered components 

of the potential functions. Thus the boundary 

conditions at the cavity surface are: 
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Incident components of the stresses and pore 

pressure are derived from incident potential 

functions using equations (26) and (27), 

respectively. The scattered components of these 

variables are derived from equation (28). 

The incident potential function is written as: 
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(32) 

 

where 0  and 0  are coefficients and K  is 

the wave number. K is related to wave frequency 

as follows: 
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Considering the following relation for P1 

incident wave: 
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It is possible to find: 
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and for SV incident wave: 
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Finally the boundary conditions, given by 

equation (31), can be written as an algebraic 

equation: 
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where the coefficients ijm  are: 
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For the P1 incident wave, the coefficients in  

are: 
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and for the SV incident wave, we have: 

 

 

 

















KaJiKiGn

KaJiKiGn

n

n

n

n

n

2

2

03

2

2

02

1 0




                                  (40) 

7. Numerical Results 

Figure 1 represents a cavity in an infinite 

isotropic elastic porous medium subjected to 

the harmonic wave. The cavity surface is 

free of stress and pressure. 

 

 
Figure 1. in an infinite porous medium subjected to 

the seismic wave 

 

 

In all following examples, the parameters, 

given in Table 1, are assumed. 

 

 
Table 1. Parameters used in applications 

  n  
s  

 3m/kg  

f  

 3m/kg  
  

Q  

 MPa  

0.33 0.3 2700 1000 1 66,700 

A. Validation 

To verify the proposed solution, a comparison 

between the well-known solution of solid medium 

and the result of this solution reduced to a solid 

case is made. In Figure 2, the absolute values of 

real and imaginary parts of dynamic stress 

concentration factor (D.S.C.F.) in a solid medium 

for the P incident wave versus various 

dimensionless wave numbers ( Ka ) and Poisson 

ratios are plotted ( 2/ ). This factor is the 

hoop stress along ar   normalized by

  2
0 KG2 . An excellent agreement with the 

results of  has been observed.  

In another example, the present solution is 

compared with the solution obtained by in a poro-

elastic medium by using a boundary layer 

approximation. Figure 3 shows the variations of 

normalized pore pressure and effective stresses 

for the cavity in a porous medium versus the 

normalized radial distance ( r /a) for various angel 

Y 

Porous Medium 

Incident Wave 

X 

a 
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(  ) of P1 incident wave. The stress and pore 

pressure values have been normalized by     

2
00G , in which 

G

2
2
0


 . 

In this example, the following values are 

chosen: 2000G  MPa , 810k  kgsm3 /  and 

1Ka  . As it can be observed, there is a very 

good agreement between these results and those 

from the solution of the problem.   

 

B. Parametric study 

To investigate the effects of different parameters, 

a parametric study is performed for the same 

geometry and with the mentioned parameters. In 

this study the cavity is subject to the P1 incident 

wave.  

Figure 4 gives the ratio of effective hoop 

stress to the parameter 2K  versus the 

dimensionless wave number, Ka  ( ar  ,

2/ ) for various soil shear modules. It can be 

observed that the hoop stress increases with 

increasing shear modulus. Figure 5 represents the 

ratio of effective hoop stress to the parameter 2K  

versus dimensionless wave number, Ka  ( ar  ,

2/ ) for different permeability coefficient, k 

( s/m ). Permeability does not have a significant 

effect on the stress response. Figure 6 shows the 

ratio of effective hoop stress to the parameter 2K  

for various points at the edge of the cavity and 

various values of shear modulus of the soil                 

( 1Ka  , ar  ). Figure 7 gives the ratio of 

effective radial stress to the parameter 2K  for 

various points at the edge of the cavity and various 

values of shear modulus of the soil ( 1Ka  ,

a2r  ). As it can be seen, the value of stresses 

increases with increasing shear modulus. Figure 8 

represents the ratio of pore pressure to the 

parameter 2K  versus the dimensionless wave 

number, Ka  ( a2r  , 2/ ) for different 

permeability coefficients. The same effect on the 

pore pressure response is observed. The 

contribution of the fast, slow and shear waves on 

the scattered radial displacement  (
sc
ru ) response 

is presented in Figure 9.  

This Figure gives the displacement 

amplitude of the fast, slow and shear components 

of scattered waves normalized by the incident 

wave displacement ( 1Ka  ,  ). It can be 

found that the most significant contribution of 

displacement is due to the fast wave. The shear 

wave has a medium contribution. The 

contribution of slow wave is very small.

 

 
Figure 2. Absolute values of real and imaginary parts of D.S.C.F versus dimensionless wave number for various 

Poisson ratio in a solid medium ( )2/ .Solid line: present study, point line  
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Figure 3. Values of normalized pore pressure and effective stresses versus distance from the cavity due to P1 

incident wave. 

(1: 0 , 2: 4/ , 3: 2/ , 4: 4/3 , 5:  ).Solid line: present study, point line 

 

 

 

Figure 4. Ratio of effective hoop stress to 2K  versus dimensionless wave number for various shear modulus of 

the soil ( 2/ ) 
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Figure 5.Ratio of effective hoop stress to
2K versus dimensionless wave number for various permeability 

parameters of the soil ( 2/ ) 

 

 

Figure 6. Ratio of effective hoop stress to 2K  for various shear modulus of the soil ( 410k  s/m , 1Ka  , ar  ) 

 

 

Figure 7. Ratio of effective radial stress to 2K  for various shear modulus of the soil (
410k  s/m , 1Ka  , 

a2r  ) 
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Figure 8. Ratio of pore pressure to 2K  versus dimensionless wave number for various permeability parameters of 

the soil ( 2/ ) 

 

 
Figure 9. Normalized amplitude of scattered radial displacement versus radial distance from cavity (  ) 

 

7. Conclusion 

This paper presents an analytical solution for 

the scattering of harmonic waves by a cavity in an 

infinite isotropic porous medium based on Biot 

wave propagation theory. The presented 

formulation is for a 2D plane strain case. This 

analytical solution is obtained in series of Hankel 

Functions by applying complex functions to the 

governing equations. The validation of proposed 

solution is shown by various numerical examples. 

A parametric study including the effects of fluid 

compressibility changes, shear modulus and 

permeability variations, several wave numbers 

and wave types (fast, slow and shear waves) are 

performed. One can note that the effect of shear 

modulus changes on the induced pore pressure 

and effective stress variations is more significant 

than that of permeability. 

The contributions of the fast wave and shear 

wave in the radial displacement are more 

important than that of slow wave. Since in this 

method the radiation condition is satisfied directly 

in a simple manner, this analytical solution seems 

to be a powerful and efficient way for evaluating 

the wave propagation and scattering in unbounded 

isotropic poro-elastic saturated domains.
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