[1] Roxborough, F. F., & Phillips, H. R. (1975). Rock Excavation by Disc Cutter.
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 12(12), 361-366.
http://dx.doi.org/10.1016/0148-9062(75)90547-1.
[2] Sanio, H. (1985). Prediction of the Performance of Disc Cutters in Anisotropic Rock.
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,
22(3), 153-161.
http://dx.doi.org/10.1016/0148-9062(85)93229-2.
[3] Nilson, B., & Ozdemir, L. (1993). Hard Rock Tunnel Boring Prediction and Field Performance. In L. D. Bowerman & J. E. Monsees (Ed.), Proceeding of Rapid Excavation and Tunneling Conference (pp. 833-852). Boston: Society for Mining Metallurgy. ISBN: 9780873351270.
[4] Tarkoy, P. J. (1974). Prediction TBM Penetration Rate in Selected Rock Types. Proceeding of the Ninth Canadian Rock Mechanics symposium (pp. 257-269). Montreal: Mines Branch, Department of Energy, Mines and Resources.
[5] Graham, P. C. (1976). Rock Exploration for Machine Manufacturers. In Z. T. Bieniawski (Ed.), Exploration for Rock Engineering: Proceedings of The Symposium on Exploration for Rock Engineering (pp.173-180). Johannesburg: A A Balkema. ISBN: 9780869610893.
[6] Farmer, I. W., & Glossop, N. H. (1980). Mechanics of Disc Cutter Penetration. Tunnels and Tunneling International, 12, 622-625.
[7] Nelson, P., O’Rourke, T. D., & Kulhawy, F. H. (1983). Factors Affecting TBM Penetration Rates in Sedimentary Rocks. In C. Christopher (Ed.), 24th U.S. Symposium on Rock Mechanics (pp. 227-237). Texas: American Rock Mechanics Association.
[8] Cassinelli, F., Cina, S., Innaurato, N., Mancini, R., & Sampaolo, A. (1982). Power Consumption and Metal Wear in Tunnel-Boring Machines: Analysis of Tunnel-Boring Operation in Hard Rock. In M. J. Jones (Ed.), Tunnelling 82 (pp. 73-81). London: Institution of Mining and Metallurgy. ISBN:090048862X.
[9] Innaurato, N., Mancini, A., Rondena, E., & Zaninetti, A. (1991). Forecasting and Effective TBM Performances in a Rapid Excavation of a Tunnel In Italy. 7th ISRM Congress (pp. 1009-1014). Aachen: International Society for Rock Mechanics.
[10] Park, C. W., Park, C., Synn, J. H., Sunwoo, C., & Chung, S. K. (2001). TBM Penetration Rate with Rock Mass Properties in Hard Rock. AITES-ITA 2001 World Tunnel Congress (pp. 413-419). Milano. ISBN: 9788855525947.
[11] Hassanpour, J., Rostami, J., & Zhao, J. (2011). A New Hard Rock TBM Performance Prediction Model for Project Planning.
Tunnelling and Underground Space Technology, 26(5), 595-603.
http://dx.doi.org/10.1016/j.tust.2011.04.004.
[12] Bruland, A. (2000). Hard Rock Tunnel Boring. Trondheim: Doctoral thesis, Norwegian University of Science and Technology, Engineering Science and Technology. ISBN:8247102811.
[13] Barton, N. R. (2000). TBM Tunnelling in Jointed and Faulted Rock. Rotterdam: A A Balkema. ISBN:9058093417.
[14]منهاج، م. ب. (1391). مبانی شبکههای عصبی.تهران، ایران: انتشارات دانشگاه صنعتی امیرکبیر. شابک: 9789644630873.
[15] Grima, M. A., Bruines, P. A., & Verhoef, P. W. (2000). Modelling Tunnel Boring Machine Performance by Neuro-Fuzzy Methods.
Tunnelling and Underground Space Technology, 15 (3), 259-269.
http://dx.doi.org/10.1016/S0886-7798(00)00055-9.
[16]یاوری، ش. م.، و مهدوری، س. (1385). پیشبینی نرخ نفوذ ماشینهای تونلبری با استفاده از شبکهی عصبی. نشریهی دانشکدهی فنی، دانشگاه تهران، 40(1)، 115-121.
[17] Yagiza, S., Gokceoglu, C., Sezer, E., & Iplikci, S. (2009). Application of Two Non-Linear Prediction Tools to The Estimation of Tunnel Boring Machine Performance.
Engineering Applications of Artificial Intelligence, 22 (4-5), 808-814.
http://dx.doi.org/10.1016/j.engappai.2009.03.007.
[18] Gholamnejad, J., & Tayarani, N. (2010). Application of Artificial Neural Networks to The Prediction of Tunnel Boring Machine Penetration Rate.
Mining Science and Technology(China), 20 (5), 727-733.
http://dx.doi.org/10.1016/S1674-5264(09)60271-4.
[19] Torabi, S. R., Shirazi, H., Hajali, H., & Monjezi, M. (2011). Study of The Influence of Geotechnical Parameters on The TBM Performance in Tehran-Shomal Highway Project Using ANN and SPSS.
Arabian Journal of Geosciences.
http://dx.doi.org/10.1007/s12517-011-0415-3.
[20] Khademi Hamidi, J., Shahriar, K., Rezai, B., & Rostami, J. (2010). Performance Prediction of Hard Rock TBM Using Rock Mass Rating (RMR) System.
Tunnelling and Underground Space Technology, 25 (4), 333-345.
http://dx.doi.org/10.1016/j.tust.2010.01.008.
[21]مهندسین مشاور ساحل. (1386). مطالعات زمینشناسی مهندسی مسیر تونل. گزارش شمارهی 2026.
[22] Demuth, H., Beale, M., & Hagan, M. (2006). Neural Network Toolbox for Use with Matlab: User's Guide, 5th. Natick, Massachusetts, United States of America: The Mathworks, Inc.
[23]مهدوری، س. (1382). پیشبینی ضریب بهروری TBMهای باز. تهران، ایران: پایاننامهی کارشناسی ارشد، دانشگاه تهران.
[24]کیا، م. (1389). شبکههای عصبی در MATLAB. تهران، ایران: خدمات نشر کیان رایانه سبز. شابک: 9786005237009.
[25]افتخاری، س. م. (1389). تحلیل عددی تاثیر پارامترهای هندسی شکستگیهای منفصل بر نرخ نفوذ دستگاهTBM در تودهسنگ شکسته-مطالعهی موردی تونل بلند زاگرس. اصفهان، ایران:پایاننامهی کارشناسی ارشد، دانشگاه صنعتی اصفهان.
[26] Eftekhari, M., Baghbanan, A., & Bayati, M. (2010). Predicting Penetration Rate of A Tunnel Boring Machine Using Artificial Neural Network. In K. G. Sharma (Ed.), ISRM International Symposium-6th Asian Rock Mechanics Symposium-Advances in Rock Engineering. New Delhi, India: International Society for Rock Mechanics.
[28] Hecht-Nielsen, R. (1989). Theory of The Back-Propagation Neural Network.
International Joint Conference on Neural Networks (pp. 593-605). Washington, DC, USA: IEEE TAB Neural Network Conference.
http://dx.doi.org/10.1109/IJCNN.1989.118638.
[29] Cybenko, G. (1989). Approximation by Superpositions of A Sigmoidal Function.
Mathematics of Control, Signals and Systems, 2 (4), 303-314.
http://dx.doi.org/10.1007/BF02551274.
[30] Basheer, I. A. (2000). Selection of Methodology for Neural Network Modeling of Constitutive Hystereses Behavior of Soils.
Computer-Aided Civil and Infrastructure Engineering, 15(6), 445-463.
http://dx.doi.org/10.1111/0885-9507.00206.
[31] Berke, L., & Hajela, P. (1991). Application of Neural Networks in Structural Optimization. NATO-DFG Advanced Study Institute on optimization of large structural systems (pp. 731-745). Berchtesgaden: Springer. ISBN:0792321294.
[32] Hecht-Nielsen, R. (1987). Kolmogrov's Mapping Neural Network Existence Theorem. In M. Caudill (Ed.), 1st IEEE International Conference on Neural Networks (pp. 11-14). San Diego. California.
[33] Caudill, M. (1988). Neural Networks Primer, Part III. AI Expert, 3 (6), 53-59. ISSN:0888-3785.